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1. INTRODUCTION

This is the final report for work performed under NASA Grant NAG-I-964 during the period January
1989 to December 1989. This work is a continuation of the work started under NASA Grant NAG-I-809 as

reported in NASA Contractor Report number 181810 "Evidence Flow Graphs for Validation and Verification

of Expert Systems".

This work is part of an ongoing program to develop software tools which enable the rapid development,

upgrading, and maintenance of embedded real-time artificial intelligence systems. Such systems are projected

to become a critical component of the next generation air and space vehicles for NASA and the Air Force who

supported this research. Realization of the potential of such systems for improving mission performance and

reducing vehicular personnel is, however, being significantly impacted by long and cosily development cycles

and the problems of maintaining these systems. Of special concern is verifying that these systems will perform

as expected and validating that upgraded versions do not inadvertently introduce catastrophic side effects.

Current AI technology uses expert systems shells to develop rules in a rapid prototyping environment.

Then the expert systems shell is used as the run-time environment. There are two major problems with this:

a) The resultant systems often cannot execute rapidly enough to meet real-time decision making con-

straints. Often the rules have to be hand translated into Ada which solves the speed problem but results

in a system which is difficult to expand and maintain.

b) There is a lack of good methods for the validation and verification of expert systems. The problems here

stem from the fact that the reasoning algorithms can have apparently non-deterministic properties as they

mimic the reasoning of people.

The Goals of this phase of the project were twofold:

1) To develop methods for automatically translating from high level knowledge representations, such as

rules, to executable Ada code. This is so that rapid prototyping could be used for rule development and

enhancement without the expense and time of repeatedly hand translating the rules to Ada code after

each change to the rules.

2) To develop methods for the validation and verification of these knowledge representations by means of

automatic test generation and evaluation. While the execution of rule.s appears to mimic non-

deterministic human reasoning, it is a deterministic data-driven time-dependent process which can he

tested using established techniques such as monte-carlo simulation. Effective testing, however, requires a

large number of trials and the generation of tests and the interpretation of the results is a more complex

process than in many more conventional systems. Hence automated test generation and evaluation tools

are required.

These goals were successfully achieved and a prototype system was demonstrated which automatically

translated rules from an Air Force expert system into Ada code. The resultant code was demonstrated to run in

real-time. The prototype test generation and evaluation system was also demonstrated to be able to detect

errors in the resultant system. The methods developed were based upon using Evidence Flow Graphs (EFGs)
as an intermediate representation.

The development of embedded Artificial Intelligence (AI) systems such as the NASA Manned Maneu-

vering Unit (MMU) diagnostic system or the Air Force Adaptive Tactical Navigator[l] have shown that there

is a conflict between the requirement for the system to respond rapidly to changes in the system's inputs and

the ability to easily develop and maintain the system's knowledge base. Systems which have to respond

rapidly, in real time, to external stimuli are typically coded in a language such as Ada so that they can execute

code modules efficiently with a minimum of system overhead for control. This makes the development and

modification of these systems a lengthy and costly process.

The knowledge bases of embedded intelligent systems are not static. They must be changed in response

to changes in mission requirements, environments, and improved knowledge about how to most effectively use

these systems. If these knowledge bases are coded in a language such as Ada then the time to change the soft-

ware and verify that the system is still operating correctly can become undesirably long.

Ideally, the knowledge base should be maintained in an environment which allows rapid changes to be

made and evaluated. Such an environment is provided by expert systems such as CLIPS[2]. These systems

allow the rapid development of knowledge bases and rapid experimentation with changes and enhancements.
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Unfortunately the resultant systems run slowly and are not capable of performing in many real-time situations.

This is due to the sequential nature of their inference engines which precludes parallelizing their execution and

the overhead associated with providing a highly interactive development environment.

When changes axe made to the knowledge base of an intelligent system the changes may result in unde-

sired side effects such as previous functions no longer working correctly or harmful output commands being

produced (such as activating effectors at the wrong time). It is important to validate that a knowledge based

system works according to specifications before it is released to the field and to verify that the system still

works correctly whenever its knowledge base is updated as part of a maintenance procedure.

Testing of a knowledge based system involves extensive use of test meta-knowledge to ensure that test-

ing covers all operating conditions in such a way as to ensure an adequate level of confidence in the system. It

is also desirable that the evaluation of the test results be performed automatically as maintenance personnel

may not have a high degree of familiarity with the knowledge base and its possible failure modes.

Current expert systems do not support such validation and verification methods. Knowledge based sys-

tems written in a standard programming language can be validated and verified using standard software tech-

niques but these methods take a considerable amount of time and are not substantially automated.

At present, knowledge bases are typically developed using expert systems and then they are recoded in a

language such as Ada so that they will run in a real time environment. This often involves stripping out much

desirable functionality and has resulted in such system compromises as the replacement of sophisticated rea-

soning mechanisms with simple table Iookups. Also it makes the subsequent maintenance and upgrading of

these systems a difficult and time consuming process.

Research performed over the past year has shown that it is possible to automatically convert knowledge

representations, such as those used by the MMU and Adaptive Tactical Navigator Systems, into Aria code

which can be executed in real time. Further, this research project demonstrated that it was possible to test the

performance of these systems using the evidence flow graphs which are used as an intermediate stage in the

translation process.

This research has resulted in the software system called KRAM (Knowledge Representation into Ada

Methodology) shown in figure 1.1. In this system high level knowledge representations, such as rules devel-

oped using an expert systems shell, are converted to Ada code modules called Activation Framework Objects

(AFOs). These AFOs are linked with the Activation Framework (AF) execution environment to produce an

intelligent run-time system which can be executed in real-time on a parallel processor. The resultant run-time

system can also be tested to ensure that it will perform correcdy in a mission environment.

KRAM uses the paradigm, shown in figure 1.2, of application modules which communicate by means of

messages. These application modules can range in complexity from a single rule to a signal processing algo-

rithm. Some modules are experts in a limited domain while others interface to sensors, actuators, and displays.

KRAM uses a data flow paradigm in which the arrival of data causes applications modules to become

primed for execution. Applications modules can be executed on a distributed heterogeneous computer system

with execution priority on any processor being given to the applications module which is most important to
execute at that instant in time.

KRAM uses an abstract representation for systems called evidence flow graphs (EFGs) which consist of

processing nodes interconnected by a directed graph[3]. Messages, which flow between nodes of this graph

over arcs, trigger the execution of the nodes. Nodes perform four functions:

1) Initialization - before execution starts

2) Priming - determines whether the node has sufficient data on its input arcs to

be fired - a node may require data on multiple arcs to fire

3) Importance - generates an estimate, based on locally available data as to the

importance of executing this node - usually based on messages on its

input arcs

4) Transfer - typically gets messages from the input arcs and sends messages out

on output arcs.
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Figure l.l System for Converting Expert Systems Rules to a Run-Time
System Capable of Real-Time Execudon

These node functions are described in terms of the evidence flow graph syntax, for which a BNF de,scrip-
don has been developed. An example of an EFG node description is:

node 1 rule i is ; this node is called rule I

inputs {ll:sys input) A:b; Arc i is an external boolean input called A

(i2:sys_input) B:b; Arc 2 is an external boolean input called B

outputs {ol:rule 2/i2) C:b; Output 1 is a boolean called C

; sent to input arc 2 of node called rule 2

priming(il and i2);

importance static(24);

transfer

get msg{il,A);

get msg(i2,B);

if A=true and B=true then send msg(24,ol) end if;

end transfer;

end node rule_l;
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Figure 1.2 The KRAM Data Flow Model of a system

A Translator to EFG syntax has been developed for Adaptive Tactical Navigator rules and translators

have been designed for ATN causal networks and for forward chaining CLIPS rules.

Expert systems shells typically contain extensive implicit knowledge. This makes the development of

rules or other high level representations simpler because the user does not have to express this implicit knowl-

edge. This implicit knowledge is incorporated explicitly into the evidence flow graph nodes during the transla-

tion process thus making the resultant EFG contextually independent of its source. The result is that EFGs

from different sources can be joined together into a single EFG.

A translator has been developed to convert EFG nodes into Ada code modules called Activation Frame-

work Objects. In this translation process the initialization, priming, importance, and transfer functions of each

EFG node are converted to Ada code procedures and placed in a package. The packages for each node are then

linked with an Ada version of the Activation Framework software package called AFA to form a run-time sys-

tem.

AFA uses the paradigm of expert object code modules which communicate by means of messages. This

paradigm was chosen based on the lessons of DSN [4]. In AFA, code module execution is triggered by the

arrival of data in the form of messages. If a code module, called an Activation Framework Object (AFO), has

no input messages then there is no requirement to schedule its execution. On the other hand, if an AFO has

many important messages queued on its input port then this AFO should be given high priority for execution.

AFOs are written as procedures, but they are executed as independent code strips by the framework to

which they are attached, as shown in figure 1.4. The framework performs AFO execution scheduling and per-

forms message delivery. This message delivery is performed by in-memory copying for delivery to local AFOs

or by use of network communications for delivery to AFOs in remote processors.

There is intended to be one AF framework per processor. This framework provides a uniform interface

for the AFOs which use a template of the form:

get_message0

perform algorithm

send_message0

Conceptually, in some processors, the framework runs stand alone in place of the operating system, and

in other cases the framework runs on top of an operating system such as Unix or VMS. In the case imple-

mented, MSDOS, the framework uses the BIOS for performing some functions but largely runs as a stand

alone multi-tasking operating system.
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AFO Application Code Modules are attached to a framework.

A key feature of AF is that applications AFOs can control the prioritization of messages and remote
AFOs. When an AFO sends a message to another AFO, it specifies how important this message is within its

own domain of knowledge. This local importance is multiplied by the global importance (as in management

hierarchy) of the AFO to form the activation level of the message. Message transmission is prioritized by acti-

vation level. More importantly, the prioritization of the AFOs within a given processor is based upon the acti-

vation levels of the messages on their input queues. By default the importance of an AFO is its global impor-

tance multiplied by the sum of the activation levels of the messages queued on its input ports. This means that

an AFO can trigger the execution of a code module on a remote processor simply by sending it a message, and

by controlling message importances, the relative execution priorities of remote processes can be controlled.

The first version of AF[5] was written in the C h-mguage and did not allow AFO pre-emption when

another AFO sent a message. This version was used in a sequence of experiments to write a multi-layer mobile
robot controller. While usable in th& form, it was found that the lack of AFO pre-emption caused significant

programming problems as the execution of any AFO code thread had to be kept short enough not to cause a
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significantdelayinexecutionof otherAFOswaitingonitscompletion.MessageswerealsocodedasASCII
stringswhichrequiredsignificantprogramminglaborandprocessorcyclesforconversionofdatatoandfrom
anASCIIformat.

A LISPlanguageversionofAFwasusedasthebasisof thelaboratoryprototypeof theAdaptiveTacti-
calNavigator(ATN)[6].Thisreal-timeAIsystemwasdevelopedbyTheAnalyticSciencesCorporation.The
ATNsystemisdesignedtoreplacethefunctionsof thenavigatorin thenextgenerationof AirForceattackair-
craft.Severalexperimentalversionsof AFhavebeendevelopedsubsequently.OneversionsupportedAFt
pre-emptionuponmessagedeliveryandanotherversionsupporteddynamicAFt instantiationandtheuseof
distributionnodestowhichmessagescanbedeliveredfordistributiontoa groupof AFOs.The Real-Time

Intelligent Systems Corporation has developed a completely new C language version of AF called AFC [7]

which features AFt preemption and uniform treatment of events. The design and user interface for AFA was

based upon AFC.

A major emphasis of this research project is on the capability to verify that the resultant system is able to

perform according to some specification and to validate that the system still performs correctly after modifica-

tions as part of a maintenance procedure. There are several major issues here:

1) How to specify how an expert system should perform. During this research phase, a constraint-based lan-

guage has been developed which allows the specification of the expected relationships between the

inputs and outputs of an expert system. This language includes the ability to specify:

a) Expected ranges of input values

b) Outputs which must occur for certain ranges of input values

c) Outputs which must not occur and the conditions under which they are prohibited.

d) The order in which inputs can occur.

e) The order in which outputs must and must not occur

f) Likely and possible ranges of input values

2) How to determine whether the system performs as specified. Here there are several choices:

a) Evaluation of the rules (or other representation) for logical consistency. This is being studied by other

investigators and was not investigated as part of this study.

b) Testing of the system using random inputs which are chosen based on the specification language. This

monte-carlo approach was investigated and used during the research reported here.

c) Evaluation of the system's EFG to determine whether errors can be detected by graph analysis tech-

niques. In the research reported here the use of Petri networks was investigated to determine whether

Petri network methods would enable the detection of such problems as unreachable nodes, deadlock, and
livelock.

3) When converting a rule base or other representation into an evidence flow graph there is a choice as to

whether to force the resultant system to follow the serial execution constraints of the original inference

engine or whether to relax these constraints. Relaxation of the serialization constraints can result in a

system with considerable parallelism which is capable of execution at high speed on a parallel process-

ing system. This is very important to related projects such as KRAPP[8] which are trying to minimize

the execution time of intelligent systems through the use of parallel processors.

If the predicate clauses of rules in a rule base are incompletely specified, and hence rely on rule ordering

for correct execution, then such a system will not execute correctly when translated to executable Ada code

unless serialization constraints are specifically incorporated by the use of inhibitor links in the EFG. As these

constraints are highly undesirable from a performance standpoint, the approach taken in developing the rule to

EFG translator described in this report is to maximize parallelism. This does, however, require a thorough test-

ing of the resultant system to ensure that it still performs correctly even after translation to an EFG.

In prior research, testing was performed by translating the Evidence Flow Graph into a Simscript simula-

tion model and testing the performance using a random selection of input values. This approach has became

problematic for several reasons:

a) EFG syntax has become much more complex as the number of cases to be incorporated in its generalized

format has increased. This made the translation into Simscript much more complicated.
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b) TheSimscriptsimulationmodelranveryslowly.
c) Thesimulationsproducedalargevolumeofoutput which was hard to use to detect errors.

This problem has been overcome by using AFA in place of Simscript. AFA, by its nature, provides most

of the queued execution model features of Simscript and executes much more rapidly. AFA has been enhanced

by the development of interfaces to input test data and to capture resultant output data. This version of AFA

has been used with the test generator to demonstrate how faults can be detected using monte-carlo techniques.

As shown in figure 1.1, the test generation program uses system performance constraint knowledge,

along with test metaknowledge and the EFG, to generate randomly selected test inputs for the run-time Ada

version of the system. These are used as successive inputs to the system and the outputs are captured into a

disk file. These test outputs are evaluated using a rudimentary test evatuator program.

In the monte-carlo analysis method, sets of inputs are generated by random choice within the ranges

specified in the test language specification. These are applied in a randomly selected order and messages are

propagated between nodes until all activity in the network ceases. As execution progresses, messages gener-

ated at the output nodes are captured in a disk file. Execution is repeated for a large number of sets of input

until the network has been tested an adequate number of times for the desired level of confidence.

The monte-carlo analysis is capable of detecting problems such as:

a) Outputs do not meet specification

b) Outputs are inconsistent

c) Outputs sensitive to small changes in input values

d) Outputs sensitive to node (rule) execution order

e) Outputs sensitive to input data order

In addition it has been found that problems such as reachability can be detected during conversion of a
rule set into an EFG.

During the past year the following project objectives have been successfully achieved:

1. Development of a comprehensive BNF language specification for Evidence Flow Graphs which encom-

passes the features found in all the intelligent systems studied including many expert systems.

2. Acquisition of Adaptive Tactical Navigator system causal network and rule knowledge representations

and their conversion into Evidence Flow Graphs.

3. Study of the CLIPS expert system shell and the development of techniques to convert forward and back-

ward chaining rule representations into EFGS.

4. Development of an automatic translator to convert ATN rules in a CLIPS-like syntax to EFGs. This
translator was written in Ada.

5. Development of a translator from EFGs to Ada code modules which, when linked with AFA, form an

executable system, This translator is written in Ada.

6. Development of an Ada version of the Activation Framework called AFA.

7. Development of a test specification language.

8. Development of a test generator program written in Common Lisp.

9. Study of methods for test evaluation.

10. Study of Petri Network technology as a way of analyzing EFGs to detect problems.

The most important achievement was the demonstration of the viability of the concept of starting with

rules and automatically converting these into executable Ada code. Not only was the resultant code executable

in real-time but it was demonstrated that the system could be tested to ensure that it performed to required per-

formance specifications for validation and verification purposes. Also, the associated KRAPP project has

demonstrated that the code is executable with a high degree of parallelism on a fault tolerant parallel processor.

It was found that random monte-carlo testing was a viable approach to evaluating performance but this

required large amounts of processor time. It was also found that a large volume of output data could be gener-

ated which indicated that it was highly desirable to use a much more sophisticated computer program to
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analyzetheoutput.
Petri network technology was studied in the hope that it would lead to techniques for the analysis of

EFGs thereby avoiding the processor time spent in monte-carlo testing. A technique for converting EFGs into
Petri Nets was developed but the resultant networks were so complex as to make them intractable from an ana-

lytic viewpoint. It was concluded that it was desirable to extend Petri network techniques to be able to include

EFGs so that graph analysis could be performed directly on the EFG to detect possible execution cycles result-

ing in livelock or deadlock.

An important byproduct of the research was an analytical understanding of the functioning of rule-based

expert system shells. In the process of studying how to convert rules and their associated shell meta-knowledge

into EFGs, many potential problems that could cause incorrect execution became apparent. Intelligent systems

are easy to develop using expert system shells because of the meta-knowledge contained within the shells.

Users only have to provide the needed additional knowledge in the form of rules. The disadvantage is that

users may be unaware of the constraints on or actions of the inference engine resulting in unexpected side

effects under certain conditions.

As a result of this research we have come to believe that the meta-knowledge in expert systems shells

should be explicitly stated and specified. Further, we have come to realize that minor changes to an inference

engine could result in significant changes in the execution of a rule base. This implies that validation and verifi-

cation procedures for rule-based expert systems must include the shells themselves as well as the rules they

process.
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2. EVIDENCE FLOW GRAPHS

This section is an exploration into the use of evidence flow graph representations for expert systems. An

EFG is a common graphical representation for intelligent systems. There are several benefits of converting an

expert system into an evidence flow graph. By using this representation it is more feasible to perform valida-

tion and verification than if the system were left in its original form. This model also provides a simpler form

for parallel execution. Lasdy, it is a unifying representation for a number of dissimilar systems.

This report provides a certain amount of theoretical background to facilitate understanding of the mate-

rial presented, and then presents a number of chapters that deal with the research undertaken in an increasingly

more specific manner. Section 2.1 examines a number of expert systems, describes the various types of meta-

knowledge found in an expert system, and explains the mathematics of evidential reasoning. Section 2.2
describes the evidence flow graph concept, how it functions, and theories associated with it. Section 2.3 dis-

cusses the translation of an expert system into the evidence flow graph model.

2.1 Background

This section provides an examination of the major areas of existing work which either motivated or gave

a foundation for the research presented in this report. Expert systems are the central topic in this report. Sec-

tion 2.1.1 defines and discusses expert systems and provides a context of historical research. In addition, it

examines some of the current shortcomings in existing systems. Section 2.1.2 discusses the large body of

implicit knowledge contained in expert systems. Section three further expands on one of the types of meta-

knowledge introduced in section two: confidence calculation or evidence mathematics. Extensive work has
been done in this area, and for the most part, only those methods which have been specifically applied to exist-

ing expert systems are examined.

2.1.1 Expert Systems

An expert system is a software system which models the reasoning process of an human who has knowl-

edge about a certain domain[9]. A human expert uses past experiences and rules of thumb to deal with present

problems. For example, a physician uses his training and experience to diagnose his patients problems. An

expert system attempts to model this kind of knowledge in a limited but intuitive way.

Expert systems are one of the first practical and widespread applications of Artificial Intelligence (AI)
research[9]. Part of the success of expert systems is that they model human intelligence in a way that is useful,

and also that knowledge is relatively easily captured in this form.

Much of the function of a typical expert system could be duplicated by a conventional programming lan-

guage. However, an expert system is a far more specialized tool than a general purpose language. In giving up

flexibility, much less effort is required to achieve the same results. An expert system is usually not intended to

perform graphics intensive operations, or complicated mathematical calculations, so it is not designed with this
in mind.

Expert systems also differ from much other AI work. The factor once again that separates expert sys-

tems from other representations is that they are designed to represent knowledge in a specific limited format.

They do not handle the very general symbolic manipulation that LISP does, for example.

With the extensive abstraction that make expert systems so easy to use there is often an additional

penalty: speed. Expert systems are optimized for human understanding and not computer execution.

In many expert systems, the knowledge is summarized in the form of rules. These rules are typically

acquired in interviews conducted by a knowledge engineer. It is his job to collect and interpret information

provided to him and convert this data into a form that is usable by the expert system that he has chosen.

The application of these rules is controlled by a portion of the expert system called the inference engine.

The inference engine must decide which rule to apply given a set of facts and previous conclusions.

Therefore, a typical expert system consists of three parts (see figure 2.1), a knowledge base, an inference

engine, and a data base (or fact base). The knowledge base is the collection of rules. It provides the knowl-

edge to reach conclusions based on given information on a certain topic or set of topics. The data base consists

of the information that is provided to the rule base. The inference engine controls evaluation of the rules. It
determines what information is used first, and the order in which rules are examined.
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Figure2.1A TypicalExpertSystem.

A ruleisgenerallyoftheformif <preconditions>then<postconditions_.
Forexample,

if haswings and can_fly then

animal is bird

The postconditions typically form the preconditions for subsequent rules.

One of the first working expert systems was the Dendral system developed at Stanford University[10].

This early system combined procedural modules, algorithms and production rules to provide a decision making

tool for an organic chemisL From this system, many others followed, most notably Mycin[ll]. Both of these

were highly specialized systems that evolved over several years of research. The most interesting development

from the Mycin research was the Emycin shell. This system was the first expert system shell. A shell is essen-

tially an inference engine without a rule base or data base. It is helps to separate the expert system developer

from programming. One shell may be suitable for solving a number of different types of problems. Emycin

was applied further for medical diagnosis, but was also used for non- medical diagnosis. Until this point, expert

systems had to be created virtually from scratch. Many other shells have since been created by other

researchers and companies.

There are two types of shells to consider. One type is the application-specific shell such as Emycin. In

this type of system, a certain amount of knowledge is embedded in the inference engine provided, along with

task-specific functions that the rule base may access. The second type is the generic shell. It contains no

domain specific knowledge and as a result is applicable to a wide variety of problems.

In examining the commercial shells it became clear that a great deal of knowledge is embedded in the

inference engine. Any attempt to translate an expert system to an EFG must take into account this metaknowl-

edge. This will be described in the following sections.

2.1.2 Metaknowledge

In the broadest sense, metaknowledge is knowledge about knowledge. Metaknowledge may be knowl-

edge about how knowledge is organized, what it means or how to obtain more knowledge. The base knowl-

edge in this case is that which is contained in the facts and rule base of an expert system. The metaknowledge

is about what the rule base knowledge means and how it is to be used. Some of this metaknowledge tells how

the inference engine functions. Other metaknowledge shows how the performance of an expert system may be

improved within the constraints of functionality. Still other metaknowledge provides information on testing

the system. For the most part, this metaknowledge has not, in the past, been categorized or examined in any

systematic fashion, if it has even been recognized at all.

It is important to be conscious of this metaknowledge for a number of reasons. Being conscious of the

differences between expert systems, and being able to categorize these differences, allows more efficient com-

parison and evaluation of the systems. To attempt a common representation of different expert systems, their

differences must be categorized to preserve their original functionality. Lastly, in developing classifications for
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thecapabilitiesof differentexpensystems,it shouldbemorepossibletopointfurtherexpertsystemdevelop-
mentinthemostfruitfuldirection.

Anumberof differenttypesofknowledgehavebeenidentifiedwhichdonotformpanoftherulebaseor
databaseofanexpertsystem(seefigure2.2).Therearethreecategoriesofthisknowledge.Someiscontained
in theinferenceengineandisnecessaryforproperexecutionof thesystem.It iscalledfunctionalknowledge.
Otherinformationiscalledoptimizationknowledge.It doesnotaffectthecorrectoperationofasystem,butis
appliedtoaparallelimplementationofasystemtoimproveperformance.The last kind of knowledge is called
simulation knowledge. This information is used in validation and verification of the system.

inputknowledge

output i_knowledge
J

simulation

knowledge

Parallelism

scheduling

control

strategy

confidence

J

optimization

knowledge

functional

knowledge

Figure 2.2 Types of Mctaknowledge.

Functional knowledge encompasses the rule base itself and confidence and control knowledge. Confi-

dence refers to the system by which conclusions are associated with a degree of certainty. Control refers to the

ordering of rule execution.

Optimization knowledge consists of scheduling and parallelism knowledge. Scheduling refers to how

the execution of rules may be ordered within the functional restraints of the system. Parallelism refers to how

a system may be rendered and executed in a parallel form.
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Simulationknowledgemaybebrokendownintoinputandoutputknowledge.Inputknowledgeisinfor-
mationabouttherangeandorderingof inputs.Thisknowledgeisnecessarytolimitthenumberoftestcases
andtoensurethattestcasesaregiveninausefuldomain.Outputknowledgeconsistsofasetofresultsthat
shouldoccurgivenasetof inputs.Simulationknowledge,andhowit relatestotheprocessof validationand
verification,isdiscussedmorefullyinsection3.3.Specificexpertsystems,andthemetaknowledgethatgov-
ernstheiroperation,aredescribedinsection2.2.2.

2.1.2.1 Rule Base

This type of metaknowledge is the least obvious of all. It has to do with the interpretation of each indi-

vidual rule - the rule semantics. The highest level of knowledge in this area is that the rule base is, in fact, a

rule base instead of, for example, a shopping list, or poetry. Beyond this, there are more useful observations.
For example, given the following rule,

if g and B then

C

if the expression is true, then do we assume that the symbol C has a value of true? If the expression is false,

may we then assume that C is false, or is it not assigned a value and may therefore contain a random value?

For the most part, this issue will be left here. Most semantic attributes of any given expert system will

be stated in a general discussion of the language or be implicit in its syntax. However, it is important to keep

this issue in mind to avoid missing something important, or declaring an aspect of a given expert system lan-

guage as obvious and not worthy of mention.

2.1.2.2 Confidence

Much knowledge has a measure of uncertainty connected with it. Facts may be confused or they may
contain errors in measurement. A Rule may not always be true for the information with which it is defined.

This situation is most obviously true in those systems which deal with medical diagnosis such as [11]. Limited

data may be available at any one time, yet useful conclusions may be reached as long as it is known that the
conclusion is not completely certain.

Different systems have different ways of dealing with uncertainty. Some are very simple and others

quite complex. The complexity of the confidence system should be carefully considered. Human experts are

given to provide conclusions on a small number of conditions[12]. An excessively complex system may force

the designer into adding information into the system purely to satisfy its mathematical requirements, rather

than to add legitimate data.

The systems described in section 2.2.2 are all quite simple, The causal network confidence system

described in section 2.3,1 is an example of a more complex method.

2.1.2.3 Control

At any one time, a number of rules in an expert system may be able to reach a conclusion. Some proce-

dure must be used to choose which one to execute first. Different systems and shells utilize different methods

to do this. Some emphasize simplicity, executing rules in the order that they were entered by the user. Others

are extremely complex, considering the recency of facts used by rules, the size of rules, confidence in rules and
data, and other factors.

In a simple system all knowledge must be encoded explicitly in the rules. In a more complex system,
this is not the case. Let us take for example a system in which rules which all have enough information to
reach a conclusion are known to be executed in a sequential order. If we have two rules

if A and F then

C,

and

if D and E then

F,
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and given that as input to the system we have A, D, and E as true and F as false, the system will not conclude

C. Given that this is the result that the designer wishes, everything appears correct. However, if a strict

sequential ordering of the rules was not necessarily the case, the inference engine might execute rule #2 before
rule #1 and conclude C instead. Therefore, what the designer really means is:

O is false

if A and F and not Q then

C

and

if D and E then

F and Q.

Any system designer should be aware of this "hidden" knowledge, as must any researcher attempting a com-

mon expert system representation. Unfortunately the details of this control are sometimes inadequately docu-
mented.

2.1.2.4 Scheduling

Scheduling refers to what liberties may be taken within the bounds of a given control strategy. Some

paths of reasoning in a given system may be more promising than others, and it may be possible to give prior-

ity to these paths without disrupting the functionality of a system. This topic will not be examined further.

2.1.2.5 Parallelism

Parallelism refers to the method and extent to which a set of decision processes may be caused to exe-

cute simultaneously. The need for speed in computation has increased dramatically in the past decade. The

increase in hardware or processor speeds and software and algorithm improvement has not kept pace with this

need. Normally, computer instructions are executed sequentially. These instructions can not be evaluated at a

speed any faster than the computer's processor is able to handle. This is known as the yon Neumann bottle-
neck.

A solution to this problem is to have multiple processors working at the same time on different pieces of
code. For example, given the calculation,

a = b × c + d x e

a conventional computer system would find b×c, then dxe and add the results. A parallel system would calcu-
late bxc and dxe simultaneously, each on a different processor. The processors would then report their results

and one processor would add those results to arrive at the answer.

In this simple situation it would seem that parallelization would be a wonderful solution, and one without

penalty. However, this is not the case. Suppose that multiplication were a very quick operation, and that mes-

sage passing between processors were quite lengthy. The result would be that the time saved in computing the

two products at the same time would be lost in the time taken to report the results of the calculation.

The tradeoff then is time saved in parallel execution versus the time to pass whatever messages are

required. While these times can be estimated, they most likely will not be exact. Therefore, the solution found

to this tradeoff may he less than optimal.

One problem then, is to determine to what extent code should be broken up into parallel sections so as to
balance the savings of parallel execution against the penalty of message passing. This is referred to as the

grain of parallelism. A related issue is, given a certain desired grain of parallelism, how should code sections

be grouped so as to minimize message passing. This is known as partitioning.

There is an additional difficulty in rendering an expert system in parallel. The control strategy must also

be functional in parallel. This may be done in a number of ways. The most cumbersome method is to pass

global importance values to each rule and only allow the one with the highest value to execute. However, this

eliminates parallelism. A better method is to allow as many rules as possible to execute, and order the outputs,
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allowingonlytheoutputfromtherulewithhighestimportancetobepassedalong.

2.1.3 Evidence Mathematics

Evidence mathematics consists of mathematical techniques for deriving a measure of confidence for a

given piece of data. It is this body of mathematical theory which forms the basis for the confidence systems

and confidence metaknowledge incorporated into many expert systems. The basic concepts are much the same

as those found in an introductory course in probability.

For example, given that we have an animal which is a bird, what is the probability that it will fly? This

might be expressed as P(flylbird). This expression states that given only the data "bird", and that no other evi-

dence exists that may affect the probability of "fly", we may conclude that "fly" has a certain probability. How-

ever, according to traditional models of probability, if we acquire new evidence such as "broken_limb", which

may affect "fly", we must consider the old expression invalid.

The Bayesian scheme for evidence combination is the first method to be examined here. It relaxes

slightly the constraints of probability theory [12]. It assumes that we may state that a given set of variables or

preconditions affects another given set of variables or postconditions, regardless of all other variables. It

requires that for every precondition we must have a conditional probability value to pair with any affected

postcondition.

This system is seldom used. It requires a large set of values and extensive computation. The conditional

probabilities are rarely accurate except in the case where large amounts of statistical data are available. The

causal network discussed in Sections four and five is an example of this type of system. The computation is

organized in a graphical manner and computations involving different dependencies may take place in parallel.

The computations propagate through the network until all the data is consistent with the mathematics of proba-
bility.

Some of the problems with the Bayesian method may be illustrated by the following example [13]. Let
us say that we have questioned an expert and that we have derived the following rule:

if animal has wings and animal lays eggs then

conclude with certainty 0.9 that animal is bird.

The expert may well agree with this statement, but is he willing to agree with

if animal has wings then

conclude with certainty 0.45 that animal is bird.

Bayesian methods would require a mathematical statement of the extent to which each component of the pre-
conditions affects the postcondition.

A newer theory, called the Dempster-Shafer method, increases the complexity of this method to allow

for the incomplete data on conditional probability inherent in most knowledge bases. It considers each proba-

bility to be an interval. It requires two confidence values to be present for each variable. They are termed sup-
port and plausibility. Support corresponds to our normal definition confidence. It is the extent to which given

information shows the datum to be true. Plausibility is the extent to which given information fails to refute the
datum.

In the case where equal, strong evidence indicates that a fact is true and that it is not true, support would

be one, and plausibility would be zero. This allows for a new measure of uncertainty which is quite powerful.

This method is consistent with the axioms of probability and specifically accounts for uncertainty in the

confidence data. The math involving a full and practical implementation of this system is beyond the scope of

this report. Further explanation may be found in [141 and[9l.

Most expert systems use a far more lenient scheme. They treat the confidence in any result or conclusion

to be a function of the inputs and the confidence in the rules which yield these conclusions. Calculations are

simple multiplication, addition, and subtraction. In the preceding example, the first rule would be sufficient.

In the case of a conjunction or set of "andes, the minimum of the confidence levels of the inputs would be used

and multiplied with the confidence in the rule to achieve the confidence in the conclusion. For example, given
the rule
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if A and B then

C,

and that A has confidence 0.9, B has confidence 0.8, and the rule has confidence value 0.7, the confidence in C

would be rain (0.9,0.8) * 0.7 = 0.56. In the case of a disjunction or set of "or"s, the maximum of the inputs
would be used.

The systems examined in section 2.2.2 are all based on this relaxed model of confidence calculation.

2.2 Theoretical Method

This Section discusses the theoretical issues involved in developing the common representation for

expert systems called the evidence flow graph (EFG). Section one describes the evidence flow graph, what it

is, and why is it needed. Section two describes specific expert systems, expert system shells, and methods.

This examination reinforces the classification of different types of metaknowledge and shows what different

potential systems a common representation must encompass. Section three discusses methods proposed for

validation and verification (V&V) of expert systems using the EFG representation. V&V issues affect many of

the design decisions for the EFG representation. Section four examines a few special issues that may affect a

translation of an expert system into an EFG. These topics are discussed in this section because they do not
arise in the translation of the two systems chosen for full translation.

2.2.1 The Evidence Flow Graph

An evidence flow graph is a form of data flow graph. It is a directed graph where each node represents a

computational or logical process. In applying the graph to expert systems, each node is usually a rule. Other
node types exist to perform special functions as shown in Section V.

Why use a graphical representation? A graph is an intuitive representation for a reasoning process [12].

One might also envision a complete programming environment where an expert system is represented graphi-
cally, and all development and testing is done with the aid of a visual representation of the rule base.

Given the rules,

and

if A and B then

C,

if B and D then

E,

a simple EFG representation for this rule base is given in figure 2.3, where each node would be activated when

all its inputs have arrived. If a boolean value for the inputs to node A and node B were present, node C would

be activated, and a value for C would then be output. #4.

However, suppose both nodes received all their inputs at the same time. If resources were limited, which

one would we choose to execute first? Also, how are we to represent confidence in the rules' conclusions?

What if a node needed only some of its input to reach a conclusion? It is apparent that a much richer represen-
tation is needed. This is described in section 2.2.1.1.

The EFG representation has currently been found to have two main uses. One is in the validation and

verification (V&V) of expert systems. The other is in the parallelization of expert systems to improve perfor-

mance.

Validation and verification is the process by which an expert system is analyzed for desired behavior.

The faults that may be found are indications of errors in the system. However, a system may still function cor-

rectly when these faults exist given that there are redundzmt sections to carry out the work of the faulty portion.

A number of specific conditions may be tested for. Both these conditions and the methods which uncover them
are described in section 5 of this Section.

The second EFG use is in parallelization. Most expert systems contain portions which may execute

simultaneously. If multiple processors are available, the expert system will run faster if these portions may be

distributed. This topic will not, for the most part, be discussed any further than it has been already in section
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Figure 2.3 Simple EFG Representation

2.1.2.5. It is, however, a very promising area for further research.

There is an important set tradeoffs involved in defining a common expert system representation. The
first is that of generality versus expressiveness. The more general and flexible the system, the more work that

is required to express a given set of specific functions. Representations may be optimized for a given domain.
Because of the intent of the design undertaken here, expressiveness is sacrificed to an extent. One design
objective is to create a representation that allows simple systems to be expressed succinctly while allowing suf-
ficient richness to express more complex systems if necessary.

A second tradeoff is that of clarity versus brevity. The popular programming language C allows for very
brief, compact code that is unintelligible to the novice. It also allows the same code to be expressed in a longer
and hopefully more readable format. Languages such as Ada do not allow compact yet unclear code. To an

extent, the approach taken in this EFG research has been more in line with the philosophy of C.

A last consideration is that of fast execution versus human readability. Assembly language is very fast
but nearly unreadable. Rule based system shells are very readable but also very slow. The solution to this
problem is to follow the example of the modern programming language - provide a readable language interface
to the user and compile the language into machine language. Here the readable language is the original rule
base language and the target language is Ada which is then compiled into assembly language.

2.2.1.1 Node Information

The information in an evidence flow graph representation consists of a number of different conceptual

partitions. This is illustrated in figure 2.4. The most basic is the physical portion. This section lists the nodes
and the arcs that connect them. The next portion is the description of the rule that the node represents. This
includes both the predicates or left hand side of the rule, and the conclusion or right hand side. Together with
this portion may be grouped the variables and constants that the node needs, and the type of the node. The
most abstract portion consists of descriptions of the procedures which control the execution of the nodes. It is
this highest part which is the most complex.

There are four different fields in the highest conceptual portion of a node. Each field contains the name
of a particular method for controlling one aspect of a node's execution. They are: token consuming, priming
function, importance function, and confidence function.

Token consuming refers to the method by which information is used and renewed at a node's inputs.
Two different methods have currently been identified. In some systems when a rule receives all the necessary

inputs, it fires or reaches a conclusion, and the information that it received is discarded. In other systems, old
information is retained. When new information arrives the rule may fire again using both the old and new
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Figure 2.4 Node Information

information, instead of waiting for a completely new set of inputs. For example consider the rule:

if A>50 and B>30 then

C

In a non-consuming system, if the rule receives A=72 and B=40, it concludes C. When the information
A=60 arrives, it concludes C again. In a consuming system when the new A arrives it must wait for a new B
value to arrive because the old value for B has been discarded.

The priming function refers to the condition under which a node is considered to have enough informa-
tion to evaluate its expression. Two different methods have currently been identified. In the first type, a rule
will be considered ready to fire if sufficient evidence is present to form a logical conclusion. In the second
type, a rule must have all its inputs present to fire. For example, in the first type of system, the rule

if (A and B) or {C and D) then

E

must have only A and B or C and D to fire, because both portions of the disjunction are not necessary to reach
a conclusion. In the second type of system, all the inputs must be present for the rule to fire.

The importance function determines which primed node fires next. This is usually static in a forward
chaining system. However, in a backward chaining system, a complex, dynamic scheme is necessary, com-

bined with extensive graph augmentation. This will be described in section 2.2.3.2.

This function is very closely related to the control metaknowledge of the inference engine. It is not,
however, identical. There is a certain amount of freedom that may exist in execution order. In this case, opti-
mization for rule firing order may take place without changing the functionality of the system. Importance

functions vary widely from system to system. Only the functions for the system examined in section 2.3 will
be explained in detail.

The confidence function is the algorithm that calculates confidence in the conclusions that the expert sys-
tem reaches. Several of these schemes are explained in section 2.1.3. Because most of these systems are sim-

ple, they are best implemented as functions of the EFG. However, in a system as complex as the causal net,
the process must be achieved by creating a separate network to calculate confidence.
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2.2.2 Expert Systems

2.2.2.1 Mycin

Although Mycin is a relatively complex system in total, it provided some general design examples which

were adopted by many later systems. In this section and the following sections, the features to be examined are

the confidence and control strategies. Many of Mycin's peculiarities and special cases have been omitted in

this section. Only the general confidence and control strategies are examined.

In Mycin both rules and facts have an associated confidence value. The confidence in a new fact is a

function of the confidence in the inputs and the rule that combines them. When facts are combined using an

"and" function, the confidence in the conclusion is the product of the rule confidence and the minimum confi-

dence of the inputs. When facts are combined using an "or" function, the confidence in the conclusion is the
product of the maximum confidence of the inputs and the rule confidence. For example, consider two rules:

Rule _I Rule #2

if A and B %hen if A or B then

C G

If rule #1 has a confidence of 0.90, A has confidence 0.75 and B 0.80, then C will have confidence

0.75*0.90=0.675. If rule #2 has confidence of 0.90 then G will have confidence 0.80*0.90=0.72.

There is also one more complicated calculation that is used when the same fact is concluded by two dif-
ferent rules. When there is no explicit relation stated, an equation is used to pool the evidence. Given that S1

is the belief in conclusion 1, and $2 is the belief in conclusion 2 the equation is S_total=Sl+S2*(1-S 1).

For example, if conclusion A is reached from two sources, one with a confidence of 0.80 and one with a

confidence of 0.90 the resulting confidence is 0.80+0.90"(1-0.80)=0.98.

Mycin is a backward chaining system. The goal with the highest confidence is the one evaluated first.

Subsequent rules are evaluated in a depth first manner. The rule with the highest confidence that supports the

current goal or subgoal is evaluated first. In this way, there is a train of thought in the questions the system

asks. The information that it gathers is increasingly specific. If an hypothesis is refuted, it backs up and tries

the closest related goal which has not been tried.

2.2.2.2 Insight 2+

Insight 2+ is a simple commercial expert system shell. It is designed for a wide variety of applications.

It has no facility for pooling evidence. Only confidence given explicit relations may be calculated. Conjunc-

tions or "and" functions take the minimum of the input confidences, and disjunctions or "or" functions take the

maximum. In other respects it has the same confidence system as Mycin.

This package has a very simple backward chaining control strategy. The rule with the highest rule confi-

dence that supports the current goal or sub- goal is evaluated first. In other respects it has the same control

strategy as Mycin.

2.2.2.3 Exsys

The confidence system in EXSYS has been geared for flexibility. It has five confidence systems from

which one may be selected. They are, for the most part, similar to those discussed above. In the first, facts

may be true or false only; in the second, values in the range of zero to ten are allowed. In the third, values

from zero to one hundred are allowed, and three choices are provided for combining identical conclusions that

lack a specific relation. These are: average all results, multiply all results, and pooling given by the equation

$3=1-((1-S1)*(1-$2)). The fourth option is an increment/decrement system where evidence levels are only

raised or lowered by addition or subtraction. The last option is really the absence of a confidence system. The

user may write his own at an arbitrary level of complexity.

This package has a straightforward control strategy. There are three options which control the extent to
which the rule base is examined. Otherwise, it is essentially a forward chaining system in which the rules are

evaluated in the order that they were entered in the rule base.
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Thefirstoptionis toexamineall rules that have enough information to reach a conclusion. The second

is to stop after one result is found. That is, to stop after a rule that has reached a conclusion that does not form
the input to another rule. The last option is to fire only those rules which do not reach a conclusion that has

been reached previously by another rule.

2.2.2.40ps 5

OPS5 is a rule-based (production-system based) programming language for intelligent systems which

was developed at Carnegie-Mellon University. It is forward chaining and uses the very efficient RETE match-

ing algorithm for finding applicable rules[15, 16]. The design of the CLIPS programming language is based to

a significant degree on that of OPS5.

2.2.2.5 Clips

Clips is an expert system shell developed by NASA and is available for use on government contracts and

can be purchased commercially through COSMIC. Clips is a relatively simple system that also contains a

number of potentially complex extensions. This makes it suitable for both the novice and serious developer.

Clips has no confidence strategy. Its control strategy is similar in philosophy to that of Ops 5. The most

recent conclusions are those targeted for execution. It is a forward chaining system. Rules which refer to the

most recently asserted fact are those which may be executed. Among those rules, the one executed first is the

one which appears first in the rule base. Facts are not consumed once used by a rule, but remain to be used

again should more recent rules be exhausted.

One added complexity is that Clips handles a Proiog style unification. Facts which are asserted may

have not only a predicate and a value, but a whole series of parameters each of which may be the index for the

others. For example, the fact

(married bob jane)

may be matched with

(married bob ?X),

or

(?relation bob jane).

This complex syntactical structure introduces may problems for translation into a common expert system rep-
resentation.

2.2.3 Special Considerations of the Evidence Flow Graph

2.2.3.1 Node Typing

The node may be one of a number of conceptual types. These are: rule, value, and procedure. The rule

type is the most common. This node simply represents a rule. A value node contains a variable of arbitrary

type. This type of node must have a higher importance function value than all rule nodes to ensure that nodes
do not work with old or inconsistent data. This type of node is desirable when more than one node shares a

given variable.

The last type of node is the procedure node. This is used only in very special cases. Normally, a library

of named procedures is maintained. This library may contain user procedures in addition to a standard set.

During conversion of the expert system into Ada code, these procedures are identified by name and added to

the code for the EFG. For purposes of conceptual clarity, or as an aid to optimal parallelization, the procedure

may be represented as a node.

A procedure node is desirable when the procedure it represents is large and complex and is accessed by a
number of rule nodes. It does not function like a regular rule node. The information that a procedure node

generates is only valuable for the node that sent the procedure node its input. Therefore, the output of a proce-

dure node must only be sent to the node that provided its input Normally, a node sends its results to all the
other nodes that reference these results. A procedure node, however, must send its results only to the nodes

that ask for them by sending the parameters the procedure needs.
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2.2.3.2 Backward chaining

Converting a backward chaining expert system (BCES) to an EFG is a somewhat difficult ta__. This is

due to the fact that an EFG is essentially a feedforward system, and a BCES is a feedbackward system. The

conversion process involves extensive graph augmentation. This conversion works basically as follows: first,

the rule base is converted as if it were a forward chaining system (see figure 2.5). Next, another graph is cre-

ated identical to the first in all but one respect, the direction of the arcs is reversed. Finally, all the nodes in the

second graph are connected to their counterparts in the first (see figure 2.6).

if A and B then
C

if S and T then
C

if A and D and
F

if X and Y then
A

E then

Figure 2.5 Forward Chaining System.

2.3 An Application of the Evidence Flow Graph

2.3.1 Causal Network

2.3.1.1 Explanation

An implementation of a causal tree in reality consists of two related trees. One explicitly controls the

calculation of confidence, and the other controls the acquisition of evidence. While the first tree is the subject

of the current research that deals with causal trees, the second is needed in any case where the acquisition of

evidence is software controlled. The acquisition tree is in this case a simple rule base.

The confidence tree is a tree structured graph where the root contains the entire possible set of hypothe-

ses. Each successive level going down the tree breaks this set into smaller and smaller groups. The leaf nodes

contain individual hypotheses. Initially, the confidence tree contains no evidence. The designer supplies an

initial guess as to the likelihood of each hypothesis being true. In addition, the designer must supply a matrix
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Figure 2.6 Backward Chaining System.

of probabilities for each link in the graph. This matrix contains the conditional probabilities of the child nodes

given the parent's truth.

A preparatory stage occurs as follows. The initial guess is supplied to the root node. This information

propagates down the tree in a breadth first fashion. Calculations occur at each node. When the terminal nodes

are reached, they may send information back up the tree which propagates up to the root. At this point, the tree

is ready to accept evidence.

When an hypothesis is found to be either true or false, this is entered in one of the node's variables. The

new information must propagate up and then back down the tree for equilibrium to be reached. See section
2.3.1.3 for more information.

2.3.1.2 TASC system

The example causal tree that will be used is part of a system that evaluates the health of a navigational

system in a future fighter aircraft. The navigation works by triangulating electronic signals from several satel-

lites (called GPS) and by comparing this position against an inertial navigation system (INS). The causal tree

has eight inputs, and five parent nodes (see figure 2.7), which are briefly explained below. An asterisk denotes

an input node.

The expert system that controls that acquisition of evidence is shown in figure 2.8. The conclusions that

may be reached are signals to acquire evidence. The evidence to acquire forms the input to the causal tree.

The names for the conclusions correspond to the names of the terminal nodes of the causal tree. There are four

system inputs to the evidence expert system. They are: equip health, jtids, busy, and health. Equip health



-24-

waypoint
sial

ecm

env

sol

bility

eo radar

des

aware

t alpha

Figure 2.7 TASC System - Confidence Tree

Term Explanation

equip health
waypoint stat
sol reliability
pilot aware *
waypoint map
previous waypoint *
ecru env *

alpha check *
eo radar des *
unaided sol *

wm map error *
lead map error *

health of current navigational system
missed waypoint?
solution reliability
was the pilot aware?
was map in error?
was last waypoint seen?
electronic counter measure

check with wingman
electro-optical radar designation
unaided solution (INS only)

wingman map error
lead pilot map error

signifies that the eqmpment health has been asked for. Jtids signifies that an electronic transmission of infor-
mation has been completed from another aircraft. Busy signifies that the pilot is not busy and may be asked a

question. This is a function of the pilot's workload. Health signifies that the health of the equipment is doubt-
ful or good.
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I Inavl, inpul equipslalus

Figure 2.8 TASC System - Acquisition Network

While most of these nodes may have only two values (good/bad, yes/no), others have three including an
intermediate value. These values are listed in the table below for each node in the tree.

2.3.1.3 Translation and Details

Each node must contain five variables: P, L (usually called lambda), Q, R and S[12]. These variables are

all column vectors with a size equal to the number of values of the variable represented by the node. In addi-

tion, the node must contain a constant matrix with a size equal to the number of possible input values to the

node by the number of its possible output values. R's and L's are sent up the tree, and Q's and S's are sent

down the tree. P may be sent to an output node for printing or other use.

At a terminal node, R represents the state of its possible values. At first, this variable contains only the

probability of truth of each of these values. As information is obtained, these values become locked at either

completely true or completely false.
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Node Values
equiphealth
waypointstat
solreliability
previouswaypoint
ecmenv
eoradardes
unaidedsol
pilotaware
waypointmap
wmmaperror
leadmaperror
alphacheck

good,bad
modebad,pilotunaware,waypointoff
good,bad
nominal,doubtful,missed
jammers,clear
agree,disagree
agree,disagree
yes,no
agree,disagree
yes,no
yes,no
agree,disagree

QandRaretheonlyvariableinputstothesystem.ChangesinR'sand L's are not affected by changes in

Q's and S's. When new information is obtained and R changes as a result, L's change and are communicated

upwards with the R's. This causes changes in the Q's and S's which are communicated downwards. Because

R's and L's are not affected by Q's and S's, the cycle of changes is complete with one pass up the tree and one

pass down.

A node may be considered primed when it receives any input.

The control strategy for the acquisition tree may be a simple in-order scheme. The causal tree's control

strategy is inherent in its function. As soon as any node has new input it may fire without restriction - a simple

in-order scheme applies here also. There is however one important consideration. The evidence found in P

will not be valid unless both the upward and downward passes through the evidence tree are complete. If the

acquisition tree relies on this knowledge, then it must wait for the passes to be complete before providing new

input.

All nodes use these equations:

1) L = pi(Rj)

2) Si = Q * pi(Rj) where j<>i

3) P = LQ (normalized)

4) R = ML

5) Q = MtSi

All of the variables on the left hand side are vectors whose dimensions are equal to the number of values

that the node may represent. For example, in the waypoint map node, they would all have a dimension of two.

"pi" denotes the successive, component-wise multiplication of the particular variable. Normalized means that

all the components of the resultant vector must sum to one. M is the conditional probability matrix for a node,

and Mt is the transpose of that matrix.

Equation #1 means that for all the children of the given node, multiply their R's together.

Equation #2 means that to send an S to every child node of the given node, multiply vector Q by the pi of

the R's of each child, except where the S is output to the node from which the given R is an input.

Equation #3 means to multiply vector L by vector Q and normalize the result. It is not necessary to nor-

malize any other vector, but P must be normalized since it is output.

Equation #4 means to find the R going to the parent node, multiply the matrix of the link between the

node and its parent by L.

Equation #5 means to find the Q going to a given child node of the current node, to multiply the inverse
of the matrix on the link between the node and its child by the S that is sent to that child.

It is important to note that for a terminal node, there is only one R as input and so equation #1 reduces to

L=R.
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Figure2.9showstheflowofdatabetweennodesintheconfidencetree.

Figure2.9ConfidenceTree- NodeDiagram
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3. EVIDENCE FLOW GRAPH TRANSLATORS

3.1 Design and Implementation of the Translators

Two translators were created. One converts an acquisition tree rule base to an EFG. The other converts

an EFG into Ada AFOs. In addition, a hand translation of the confidence tree into an EFG and of the EFG into

Ada AFOs was performed.

3.1.1 Rule to EFG Translator

This translator has two parts, a parser and a generator. The parser reads the file containing the rule base

into an internal list representation. The list is passed to the generator. The generator first determines which

rules are connected to each other and numbers all the connections. Rules which have inputs that are not the

outputs from another rule are labeled as external inputs. Correspondingly, rules which have outputs that are

not the inputs from another rule are labeled as external outputs. At this point, EFG nodes are generated and

sent to a file. The generation of rule nodes is relatively straightforward. It essentially consists of listing inputs

and outputs with their associated connectivity information, and reproducing the rule. Lastly, input/output

nodes are generated. Input nodes simply receive input from a node called external which is generated later as

an AFO. A single output node just prints its input.

3.1.2 EFG to Ada AFO Translator

This translator also has two parts, a parser and a generator. The parser reads the file containing the EFG

into an internal list representation. The list is passed to the generator. For each EFG node the generator creates

a file which will be an AFO. It creates a priming function which tests to see if messages are present on every

input port. It also creates a transfer function which receives input, executes a rule, and forwards the output.

The same format is generated for input nodes except that instead of executing a rule they merely route mes-

sages. An output AFO is created which prints the conclusions of the rule nodes. A frame file is also created

which specifies to AF what AFOs exist and what the names of their respective priming and transfer functions
are.

3.1.3 Execution of the AFOs

AF is executed with the frame file and AFOs from the EFG to Ada translator. It creates a compilation

batch file which when executed links the AFOs with the AF execution environment. The result of this process

is a single executable file.

3.2 Evidence Flow Graph Syntax

The syntactical representation of the nodes in an EFG is simply a concise listing of the fields illustrated

in section 2.2.1.1. The representation is listed in Backus-Naur form. Keywords that appear literally in the syn-

tax are shown in boldface. ::= means "is defined as". I means "or". {} enclose items which are to be repeated

zero or more times. [] enclose optional items. Characters which are part of BNF syntax that appear literally in

the EFG syntax are enclosed in single quotes. Comments may appear anywhere in the node when surrounded
by curly braces.

node : := node integer string is

input

output

statvar

dynamvar

constant

transfer

token

priming

truth

importance

confidence

end node string;
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input ::= (inputs {(inputnum) vardef;}]

output ::= [outputs { (outputnum) vardef;}]

statvar ::= [statvars {vardef;}l

dynamvar ::= [dynamvars {vardef;}]

constant ::= {constants {constdef;}]

transfer ::= transfer transfer_body; (transfer body;) end transfer;

token ::= token token name;

priming ::= priming logical;

truth ::= [truth expression;]

importance ::= [importance import_name import_type real;]

confidence ::= (confidence certainty conf name;]

transfer_body ::= horn I statement

inputnum ::= inport:n/outport

outputnum ::= outport:n/inport

vardef ::= string:ddl

constdef ::= string : ddl = value

horn ::= if expression then {statement;) endif

function ::= string({parameter})

procedure ::= string((parameter})

token name ::= consuming [ non_consuming I string

import_name ::= constant equal I string

import_type ::= static i dynamic

conf name ::= null I mycin I string

logical ::= sublogical (logic_operator sublogical)

certainty ::= integer {real}

comment ::= '{'string')'

inport ::= i# I string

outport ::= o# I string

n ::= n# I string

ddl ::= (ddl_element}

value ::= constant I record_constant I array_constant

expression ::= subexpression (logic_operator subexpression}

statement ::= assignment I procedure

parameter ::= value L variable

sublogical ::= sublogical r (sublogical) t inport

logic_operator ::= and I or I not

parameter ::= value I variable

ddl element ::= C I I I F [ array_def i string_def I list_def

constant ::= string ] integer

record constant ::= (record constant element {;record constant_element))

array_constant ::= (value (value})

assignment ::= variable := rhs

subexpression ::= (subexpression) I comparison

port ::= inport I outport

variable ::= port I string

array_def ::= A(ddl_element) [integer (,integer))

string_def : := S[integer]

list def ::= L(ddl_element)

comparison ::= variable comp_operator rhs

record constant element ::= value

rhs ::= variable I value I function

comp_operator ::= < I > i = I =< L =>

3.3 Causal Network Syntax

In section 3.3.1 the syntax definition for a node on the confidence tree is given. Section 3.3.2 provides a

listing of the node definitions for the twelve nodes in the confidence tree for the TASC system which was
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depictedin figure2.7. In section 3.3.3 the syntax definition for the acquisition tree is given, and section 3.3.4
provides the rules for the acquisition tree.

3.3.1 Confidence Tree Syntax

Besides the header information, there are four sections in a node. The states refer to the set of values

which a node may have. The parent and children identify the parent and children of a node and the matrices

give the conditional probability matrix for each node. The matrices consist of an integer followed by a list of

two conditional probabilities for each state followed by the vectors of conditional probabilities of the child
nodes given the parent's truth.

The following is the syntax definition for a node on the confidence tree.

node ::= (node integer string

(states integer (string})

(parent [n#])

(children integer (n# })

(matrices integer {{ ({%)) }))

# ::= integer

% ::= real

3.3.2 Confidence Tree L_ting

The following is a listing of the node definitions for the twelve nodes in the confidence _ee which was
depicted in figure 2.7.

(node I eq_mode_health

(states 2 good bad)

(parent)

(children 1 n2)

(matrices 1 ((.i .45 .45)

(.9 .05 .05)) ))

(node 2 waypoint star

(states 3 mode bad pilot_unaware waypoint_off)

(parent nl)

(children n3 n4 n5)

(matrices 4 ((.i .45 .45)

(.9 .05 .05))

( (O i)

(.9 .i)

{.9 .I))

((.9 .i)

(0 I)

(.9 .l))

((.9 .I)

(.9 .i)

(O I)) ))

(node 3 sol reliability

(states 2 good bad)

(parent n2)

(children n6 n7 n8 n9 nlO)

(matrices 6 ((O I)

(.9 .i)

(.i .l))
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((.7 .2 .l)

(.3 .3 .4l)

((.i .9)

(.8 .2))

((.8 .2l

(.2 .8))

( (.8 .2)

(.2 .8))

((.8 .2)

(.2 .8) ) ) )

(node 4 pilotaware

(states 2 yes no)

(parent n2)

(children)

(matrices 1 ((.9 .i)

(0 I)

(.9 .I)) ))

(node 5 waypoint_map

(states 2 agree disagree)

(parent n2)

(children nll n12)

(matrices 3 ((.9 .I)

(.9 .I)
(0 i) )

(.2 .8)

.8 .2)) ))

(node 6 previous_waypoint

(states 3 nominal doubtful missed)

(parent n3)

(children)

(matrices 1 ((.7 .2 .i)

(.3 .3 .4)) ))

(node 7 ecm env

(states 2 jammers clear)

(parent n3)

(children)

(matrices 1 ((.i .9)

(.8 .2)) ))

(node 8 alpha_check

(states 2 agree disagree)

(parent n3)

(children)

(matrices 1 ((.8 .2)

(.2 .8)) ))
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(node 9 eo radar des

(states 2 agree disagree)

(parent n3)

(children)

(matrices 1 ((.8 .2)

(.2 .8) ) ) )

(node i0 unaided sol

(states 2 agree disagree)

(parent n3)

(children)

(matrices 1 ((.8 .2)

(.2 .8)) ))

(node ii wm_map_error

(states 2 yes no)

(parent nS)

(children)

(matrices 1 ((.2 .8)

(.8 .2)) ))

(node 12 lead_map_error

(states 2 yes no)

(parent nS)

(children)

(matrices 1 ((.2 .8)

(.8 .2)) ))

3.3.3 Acquisition Tree Syntax

The following section shows the syntax definitions for the acquisition tree.

node ::= (rule integer string

(input (input-vardef))

(output (output-vardef))

(horn))

input ::= inputnum I string

output ::= outputnum f string

vardef ::= string ddl

horn ::= if expression then statement

inputnum ::= i#/n#/o#

outputnum ::= o#/n#/i#

ddl ::= (ddl_element}

expression ::= subexpression (logic_operator subexpression}

statement ::= assignment ] function

ddl_element ::= C i I i F I array_def I string deC i list def

logic_operator ::= and I or I not

assignment ::= variable = rhs

subexpression ::= (subexpression) I comparison

function : := strlng({parameter})

array_def ::= A(ddl_element) [integer (,integer}]

string_def ::= S[integer]

llst_def ::= L(ddl_element)

variable ::= port I string

comparison ::= variable comp_operator rhs

rhs ::- variable t value

comp_operator ::= < i > I = I =< I =>

parameter ::= value I variable

port ::= inport i outport
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inport ::= i#integer

outport ::= o#integer

3.3.4 Acquisition Tree Listing

This section lists the rules for the acquisition tree.

(rule I a previous_waypoint

(inputs eq_mode_health)

(outputs previous_waypoint)

(if eq_mode_health=true then

get_previous_waypoint=true))

(rule 2 a unaided sol

(inputs eq_mode_health)

(outputs unaided sol)

(if eq_mode_health-true then

get_unaidedsol=true))

(rule 3 a ecm env

(inputs eg_mode_health)

(outputs ecm_env)

(if eq mode_health=true then

get_ecm_env=true))

(rule 4 a_pilot_aware

(inputs eq mode_health pilot not_busy health)

(outputs pilot_aware)

(if eq mode health=true and pilot_not_busy=true and

health=true then

get_pilot aware=true))

(rule 5 a_lead_map_error

(inputs eq_mode_health pilot_not_busy health)

(outputs lead_map error)

(if eq mode_health=true and pilot_not busy=true and

health=true then

get_lead map_error=true))

(rule 6 a_alpha_check

(inputs eq_mode_health pilot_not busy health jtids)

(outputs alpha_check)

(if eq_mode_health=true and pilot not_busy=true and

health=true and jtids=true then

get_alpha check=true))

(rule 7 a_wm_map_error

(inputs eq_mode_health pilot_not busy health jtids)

(outputs wm_map_error)

(if eq_mode_health=true and pilot_not busy=true and

health=true and jtids=true then

get wm map error=true))

(rule 8 a eo radar des

(inputs eq_mode_health pilot_not_busy health jtids)

(outputs eo radar des)

(if eq_mode_health=true and pilot not_busy=true and

health=true and Jtids=true then

get eo radar_des=true))
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3.4 TASC Causal Network Translation

3.4.1 Confidence Tree Pattern

Each group of three nodes is identical to any other except for the numbering of the nodes at the destina-

tion ports, additional ports for connections to multiple child nodes, and that the input ports for the root and ter-

minal nodes are connections to external input/output nodes. See figures 3.1 and 3.2for node representations.
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Figure 3.1 Confidence Tree - Node Subdivision
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Figure 3.2 Confidence Tree - Parallelization of Nodes

The pattern for the triple is as follows:

node 4 left is

inputs (il:same_center/ol) I:A(F) [2];

(i2:above_right/ol) q:A(F) [2];

outputs {ol:same out/il) p:A(F) [21;
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transfer

get_msg (il, i) ;

get_msg (i2,q) ;

causal left (l,q,p);

send_msg (p, ol) ;

end transfer;

token non_consuming;

priming (il and i2);

end node left;

node 5 center is

inputs (if:below center/o3) rI:A(F) [2];

outputs (ol:same_left/il) I:A(F) [2];

(o2:above_center/il) r2:A(F) [2];

(o3:above_right/i2) r3:A(F) [2];

constants mI:A(F) [2,2] = ((.9 .i) (0 i));

m2:A(F)[2,2] = ((.8 .2) (.2 .8));

{ Repeated for # children }

dynamvars rlist:L(A(F) [2]);

mlist:L(A(F) [2,2]);

transfer

get_msg (il, rl); { These 3 lines are repeated for # children )

makenull (rlist);

append (rlist,rl);

makenull (mlist);

append (mlist,ml);

append (mlist,m2);

causal center (rlist,l, r2,r3,mlist);

send_msg (i, oi);

send_msg (r2,o2);

send_msg (r3,o3);

end transfer;

token non_consuming;

priming all_ready (il); ( Repeated for # children )

end node center;

node 6 right is

inputs (il:above_right/o2) gI:A(F) [2];

(i2:below_center/o3) r:A(F) [2]; ( Repeated for # children )

outputs (ol:below_left/i2) q2:A(F) [2];( Repeated for # children )

(o2:below_right/il) q3:A{F) [2];( Repeated for # children }

dynamvars s:A(F) [2];

rlist:L(A(F) [2]);

qllist:L(A(F) [2]);

q21ist:L(A(F)[2]);

transfer

get_msg (il,ql);

makenull (qllist);

append (qllist,ql);

get_msg (i2, r); ( Next 3 lines are repeated for # children }

makenull (rlist);

append (rlist,r);

causal_right (ql,rlist,qllist,q21ist);

q2 :- car(qllist); ( Next 2 lines are repeated for # children )

q3 :- car(q21ist);

send_msg (q2,ol); ( Next 2 lines are repeated for # children }

send_msg (q3,o2);

end transfer;

token non_consuming;
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priming all ready (il and i2); { More if more children }

end node right;

3.4.2 Transfer Functions for the Confidence Tree

causal left (i : in vector; q : in vector; p : out vector)

p := normalize(matmul (l,q))

causal center (rlist : in vector list; 1 : out vector;

r : out vector; r2 : out vector; mlist : in matrix_list)

1 := pi (list_len(rlist),rlist)

r := matmul (mlist (i), i)

r2 := r

causal_right (q : in vector; rlist : in vector_list; ql : out vector_list;

q2 : out vector llst)

for i:=l to list_len(rlist)

s(i) := matmul (q, except_pi(list len(rlist),rlist,i))

ql(i) := matmul (transpose(mlist(i+l)),s(i))

3.4.3 Input/Output Nodes for the Causal NeP, vork EFG

In the case that a node in the confidence tree is a root node or a leaf node, the EFG representation differs

slightly from the pattern shown in section 2.4.4.1. A root node triple is as follows.

3.4.3.1 Root node triple

node 1 left is

inputs (il:same_center/ol) I:A(F) [2];

(i2:root/ol) q:A(F) [2];

outputs (ol:same_out/il) p:A(F) [2];

transfer

get_msg (il, i) ;

get msg (i2,q) ;

causal left (l,q,p);

send_msg (p, ol);

end transfer;

token non_consuming;

priming (il and i2);

end node left;

node 2 center is

inputs (il:below_center/o3) rI:A(F) [2];

outputs (ol:same left/il} I:A(F) [2];

( Repeated for # children }

constants mI:A{F) [2,2] = ((.9 .I) (0 I));

m2:A(F) [2,2] = ((.8 .2) (.2 .8));

dynamvars rlist:L(A(F) [2]);

mlist:L(A(F) [2,2]);

transfer

get_msg (il,rl); { These 3 lines are repeated for | children )

makenull (rlist);

append (rlist, rl);

makenull (mllst);
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append (mllst,ml);

append (mlist,m2);

causal center (rllst,l,r2,r3,mlist);

send_msg (I,oi);

end transfer;

token non_consuming;

priming all_ready (il); { Repeated for # children }

end node center;

node 3 right is

inputs (il:root/o2) qI:A(F) [2];

(i2:below center/o3) r:A(F) [2]; { Repeated for # children }

outputs (ol:below_left/i2) q2:A(F) [2];{ Repeated for # children }

(o2:below_right/il) q3:A(F) [2];{ Repeated for # children }

dynamvars s:A(F) [2];

rllst:L(A(F) [2]);

qllist:L(A(F) [2]);

q21ist:L(A(F) [2]);

transfer

get_msg (il,ql);

makenull (qllist);

append (qllist,ql);

get_msg (i2, r); { Next 3 lines are repeated for # children )

makenull (rlist);

append (rlist,r);

causal_rlght (ql,rlist,qllist,q21ist);

q2 :- car(qllist); { Next 2 lines are repeated for # children }

q3 := car(q21ist);

send_msg (q2,ol); { Next 2 lines are repeated for # children )

send_msg {q3,o2);

end transfer;

token non_consuming;

priming all_ready (il and i2);

end node right;

{ More if more children }

3.4.3.2 Terminal node triple

node 22 left is

inputs (il:same_center/ol) I:A{F) [2];

(i2:above_right/ol) q:A(F) [2];

outputs (ol:same_out/il) p:A(F) [2];

transfer

get_msg (Ii, i);

get_msg (i2,q);

causal left {l,q,p);

send_msg (p, ol);

end transfer;

token non_consuming;

priming (il and i2);

end node left;

node 23 center is

inputs (ll:terminal/o3) rI:A(F)[2];

outputs (ol:same_left/il) I:A(F) [2];

(o2:above_center/il) r2:A(F) [2];

(o3:above_right/12) r3:A(F) [2];
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constants mI:A(F) {2,2] = ((.9 .I) (0 I});

m2:A(F){2,2] = ((.8 .2) (.2 .8));

dynamvars rlist:L(A(F) [2]);

mlist:L(A(F) {2,2]);

transfer

get msg (il,rl);

makenull (rlist);

append (rlist,rl);

makenull (mlist);

append (mlist,ml);

append (mlist,m2);

causal center (rlist,l, r2, r3,mlist};

send_msg (r2,o2);

send_msg (r3,o3);

end transfer;

token non_consuming;

priming all_ready (il);

end node center;

node 24 right is

inputs (il:above_right/o2)

(i2:terminal_center/o3)

ql :A(F) [2];

r:A(F) [2];

dynamvars s:A(F) [2];

rlist:L(A(F) [2]) ;

qllist :L {A(F) [2]);

q21ist :L (A(F)[2]);

transfer

get_msg (il,ql);

makenull (qllist);

append (qllist,ql);

get_msg (i2, r);

makenull (rlist);

append (rlist,r);

causal_right (ql, rlist,qllist,q21ist);

end transfer;

token non_consuming;

priming all_ready (il and i2);

end node right;

3.4.3.3 Root input node

node 1 root is

outputs (ol:node_left/i2) qI:A(F) [2];

(o2:node_right/il) q2:A(F) {2];

transfer

write_string ("variable 1 : ") ;

read real (ql(1));

wrlte_string ("variable 2 : ");

read real (ql(2});

set equal (q2,ql);

send_msg (ql,ol);

send_msg (q2,o2);

end transfer;

token non_consuming;

priming ();

end node root;
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3.4.3.4 Terminal input node

node 50 terminal is

outputs (ol:node center/ll) rI:A(F) [2];

(o2:node right/J3) r2:A(F) [2];

transfer

write string ("variable I : ");

read real (rl(1));

write_string ("variable 2 : ");

read real (rl(2));

set equal (r2, rl);

send msg (rl,ol);

send_msg (r2,o2);

end transfer;

token non_consuming;

priming ();

end node terminal;

3.4.3.5 Output node

node 60 outputl is

inputs (il:node_left/ol)

transfer

get_msg {if,p);

write real (p(1));

write_real (p(2));

end transfer;

token non_consuming;

priming (il);

end node outputl;

p:A(F)(2];

3.4.4 Acquisition Network EFG

node 1 a previous waypolnt is

inputs (il:eq_mode_health/ol)

outputs (ol:system_output/il)

transfer

get msg (il,eq_mode_health);

if eq_mode_health=true then

send_msg (i,oi};

end if;

end transfer;

priming {il);

importance static (I);

token consuming;

end node a_previous_waypoint;

eq_mode_health:B;

out:I;

node 2 a unaided sol is

inputs (ll:eq_mode_health/o2)

outputs (ol:system_output/ll)

transfer

get msg [il,eq_mode_healtb);

if eq_mode_health-true then

send_msg (2,oi):

end if;

eq_mode_health:B;

out:I;



40-

end transfer;

priming (il);

importance static (2);

token consuming;

end node a unaided sol;

node 3 a ecm env is

inputs (il:eq_mode_health/o3)

outputs (ol:system_output/il)

transfer

get_msg (il,eg_mode_health);

if eq mode health=true then

send_msg (3,ol);

end if;

end transfer;

priming (il);

importance static (3);

token consuming;

end node a_ecm_env;

eq_mode_health:B;

out:I;

node 4 a_pilot_aware is

inputs (il:eq_mode_health/o4) eq_mode_health:B;

(i2:pilot not_busy/ol) pilot_not_busy:B;

(13:health/ol) health:B;

outputs (ol:system_output/il) out:I;

transfer

get_msg (il,eg_mode_health);

get_msg (i2,pilot_not busy);

get_msg (i3,health);

if eq_mode health=true and

pilotnot_busy=true and

health=true then

send_msg (4,ol);

end if;

end transfer;

priming (il and i2 and i3);

importance static (4);

token consuming;

end node a_pilotaware;

node 5 a_lead_map_error is

inputs (il:eq mode_health/oS) eq mode_health:B;

(i2:pilot_not_busy/o2) pilot_not_busy:B;

(i3:health/o2) health:B;

outputs (ol:system_output/il) out:I;

transfer

get_msg (il,eq mode health);

get_msg (i2,pilot_not_busy);

get_msg (i3,health);

if eq_mode_healthltrue and

pilot not busy-true and

health=true then

send_msg (5,ol);

end if;

end transfer;
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priming (il and i2 and i3);

importance static (5);

token consuming;

end node a lead_map_error;

node 6 a_alpha check is

inputs (il:eq_mode_health/o6) eq_mode_health:B;

{i2:pilot not busy/o3) pilot_not_busy:B;

(i3:health/o3) health:B;

(i4:jtids/ol) jtids:B;

outputs (ol:system_output/il) out:I;

transfer

get_msg (il,eq_mode_health);

get_msg (i2,pilot_not_busy);

get_msg (i3,health);

get_msg (i4, Jtids);

if eq mode health=true and

pilot not busy=true and

health-true and

jtidsmtrue then

send_msg {6,oi);

end if;

end transfer;

priming (il and i2 and i3 and i4);

importance static (6);

token consuming;

end node a_alphacheck;

node 7 a wm map_error is

inputs (il:eg_mode_health/o7) eq_mode health:B;

(i2:pilot not busy/o4) pilot_not busy:B;

(i3:health/o4) health:B;

(i4:jtids/o2) jtids:B;

outputs (ol:system_output/il) out:I;

transfer

get_msg (il,eq_mode_health);

get_msg (i2,pilot_not_busy);

get msg (i3,health);

get_msg (i4,jtids);

if eq_mode_health=true and

pilot_not busy-true and

health=true and

Jtids=true then

send_msg [7,oi);

end if;

end transfer;

priming (il and i2 and i3 and i4);

importance static (7);

token consuming;

end node a wm map_error;

node 8 a eo radar des is

inputs (il:eq_mode_health/oS) eq_mode_health:B;

(12:pilot_not_busy/o5) pilot_not_busy:B;

(i3:health/o5) health:B;

(i4:jtids/o3) Jtids:B;

outputs (ol:system output/il) out:I;
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transfer

get msg (il,eq_mode_health);

get_msg (i2,pilot_not_busy);

get_msg (13,health);

get_msg (i4, jtids);

if eq_mode_health=true and

pilot_not_busy=true and

health=true and

jtids-true then

send msg (8,oi);

end if;

end transfer;

priming (il and i2 and i3 and i4);

importance static (8);

token consuming;

end node a eo radar_des;

node 9 eq_mode_health is

inputs (il:external/std port)

outputs (ol:a previous waypoint/il)

ivl:B;

ovl:B;

(o2:a_unaided_sol/il) ov2:B;

(o3:a_ecm env/il) ov3:B;

(o4:a_pilot aware/il) ov4:B;

(o5:a_lead_map_error/il) ov5:B;

(o6:a_alpha_check/il) ov6:B;

(o7:a wm map_error/il) ovT:B;

(o8:a eo radar des/il) ov8:B;

transfer

get_msg (il,ivl);

send_msg (ivl,ovl)

send_msg (ivl,ov2),

send_msg (ivl,ov3),

send_msg (ivl, ov4),

send msg (ivl,ov5),

send_msg (ivl,ov6),

send_msg (ivl,ov7),

send_msg (ivl,ov8)

end transfer;

priming (il);

importance static (9);

token consuming;

end node eq_mode_health;

node 13 pilot_not_busy is

inputs (il:external/std_port)

outputs (ol:a_pilot_aware/i2)

(o2:a lead_map_error/i2)

(o3:a_alpha_check/i2)

(o4:a wm map_error/i2)

(o5:a eo radar_des/i2)

transfer

get_msg (il, ivl);

send_msg (ivl,ovl);

send_msg (ivl,ov2);

send_msg (ivl,ov3);

send_msg (ivl,ov4);

send_msg (ivl,ov5);

end transfer;

priming (il);

importance static (13);

ivl:B;

ovl:B;

ov2:B;

ov3:B;

ov4:B;

ov5:B;
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token consuming;

end node pilot_not_busy;

node 14 health is

inputs (ll:external/std_port)

outputs (ol:a_pilot_aware/i3)

(o2:a lead_map_error/i3)

(o3:a_alpha_check/i3)

(o4:a wm map_error/i3)

(o5:a eo radar des/i3)

transfer

get_msg (il,ivl);

send_msg (ivl,ovl);

send_msg (ivl,ov2);

send_msg (ivl,ov3);

send_msg (ivl,ov4};

send_msg (ivl,ov5);

end transfer;

priming (ii};

importance static (14);

token consuming;

end node health;

ivl:B;

ovl:B;

ov2:B;

ov3:B;

ov4:B;

ov5:B;

node 17 jtids is

inputs (il:external/std_port)

outputs (ol:a_alpha check/i4)

(o2:a wm map_error/14)

(o3:a eo radar_des/i4)

transfer

get_msg {il, ivl);

send_msg (ivl,ovl);

send_msg (ivl, ov2);

send_msg (Ivl,ov3};

end transfer;

ivl:B;

ovl:B;

ov2:B;

ov3:B;

priming (il);

importance static (17);

token consuming;

end node jtids;

node 20 system output is

inputs (il:a previous_waypoint) ivl:I;

(il:a_unaided sol) ivl:I;

(i1:a ecm env) ivl:I;

(il:a_pilot_aware) ivl:I;

(il:a_lead_map_error) ivl:I;

(il:a alpha_check) ivl:I;

(il:a wm map_error) ivl:I;

(il:a eo radar des} ivl:I;

transfer

get_msg (il, ivl);

put_line ("ask_question #");

put (ivl);

new line {2);

end transfer;

priming (il);

importance static (20);

token consuming;
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end node system_output..

3.4.5 Acquisition Network AFOs

separate (af_start)

package body a_alpha_check is

pl, p2, p3, p4 : integer;

sl : string (1..16) := "a_alpha_check/il";

s2 : string (1..16) := "a_alpha_check/i2";

s3 : string (1..16) :_ "a_alpha_check/i3";

s4 : string (1..16) :- "a_alpha_check/14";

obJ : string (1..3) := "obj";

destpl : integer;

destsl : string (1..16) := "system_output/il";

function prim6 (afo : af struct) return boolean is

begin

pl :_ port_num(sl);

p2 := port_num(s2);

p3 :- port_num(s3);

p4 := port_num(s4);

return msg_chk (pl) and

msg_chk (p2) and

msg_chk (p3) and

msg_chk (p4);

end prim6;

procedure trans6 is

eq mode_health : boolean;

pilot_not_busy : boolean;

health : boolean;

jtids : boolean;

outv : short_integer;

eq_mode_health_ad : address := eq_mode_health'address;

pilot_not_busy_ad : address :- pilot not busy'address;

health ad : address := health'address;

jtids_ad : address :_ Jtids'address;

outv ad : address :3 outv'address;

begin

pl := port_num(sl);

p2 := port_num(s2);

p3 := port num(s3);

p4 := port_hum(s4);

get_obJ (pl, obJ,B,eq_mode_health_ad);

get_obJ (p2,obj,B,pilot_not_busy_ad);

get_obj (p3,obj,B, health_ad);

get_obj (p4,obJ,B, jtids_ad);

if eq_mode_health = true and

pilot not_busy = true and

health = true and

jtids = true then

destpl :- port_num(destsl);

outv := 6;

snd_obj (destpl,obj,SI,outv_ad,0,0.0);

end if;

ret afo;

end trans6;
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end a_alphacheck;

separate (af_start)

package body a_ecm_env is

pl : integer;

sl : string (1..12) := "a ecm env/il";

obj : string (i..3) := "obj";

destpl : integer;

destsl : string (1..16) :m "system output/il";

function prim3 (afo : af_struct) return boolean is

begin

pl := port_num(sl);

return msg_chk (pl);

end prim3;

procedure trans3 is

eq mode_health : boolean;

outv : short_integer;

eq_mode_health ad : address := eq_mode health'address;

outv ad : address := outv'address;

begin

pl := port_num(sl);

get_obj (pl,obj,B, eq_mode_health_ad);

if eq_mode_health = true then

destpl := port_num(destsl);

outv := 3;

snd_obj (destpl,obj,SI,outv ad,0,0.0);

end if;

ret_afo;

end trans3;

end a_ecm_env;

separate (af_start)

package body a eo radar_des is

pl, p2, p3, p4 : integer;

sl : string (1..17) := "a eo radar_des/il";

s2 : string (1..17) := "a eo radar des/i2";

s3 : string (1..17) := "a eo radar_des/i3";

s4 : string (1..17) := "a eo radar des/14";

obj : string (i..3) := "obj";

destpl : integer;

destsl : string (1..16) := "system_output/il";

function prim8 (afo : af_struct) return boolean is

begin

pl := port_num(sl);

p2 := port_hUm(S2);

p3 := port_hUm(S3);

p4 :- port_num(s4);

return msg_chk (pl) and

msg_chk (p2) and

msg_chk (p3) and
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msg_chk (p4);

end prim8;

procedure trans8 is

eg_mode_health : boolean;

pilot not busy : boolean;

health : boolean;

jtids : boolean;

outv : short_integer;

eq_mode_health_ad : address :- eq_mode_health'address;

pilot_not_busy_ad : address := pilot not busy'address;

health ad : address := health'address;

jtids_ad : address := jtids'address;

outv ad : address := outv'address;

begin

pl := port_num(sl);

p2 :_ port_hUm(S2);

p3 :- port_hum(s3);

p4 :_ port_hum(s4);

get_obJ (pl,obJ,B, eq_mode_health_ad);

get_obj (p2,obj,B, pilot_not_busy_ad);

get_obj (p3,obj,B, health_ad);

get_obJ (p4,obJ,B, jtids_ad);

if eq_mode_health = true and

pilot_not_busy = true and

health = true and

jtlds = true then

destpl := port_num(destsl);

outv :- 8;

snd obJ (destpl,obj,SI,outv_ad,0,0.0);

end if;

retafo;

end transS;

end a eo radar des;

separate (af_start)

package body a_lead_map_error is

pl, p2, p3 : integer;

sl : string (1..19) := "a_lead_map_error/il";

s2 : string (1..19) := "a_lead_map_error/i2";

s3 : string (1..19) := "a_lead_map_error/i3";

obJ : string (I..3) := "obJ";

destpl : integer;

destsl : string (1..16) := "system_output/il";

function prim5 (afo : af struct) return boolean is

begin

pl := port_num(sl);

p2 := port_num(s2);

p3 :m port hum(s3);

return msg_chk (pl) and

msg chk (p2) and

msg chk (p3);

end primS;

procedure trans5 is
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eg_mode_health : boolean;

pilot_not busy : boolean;

health : boolean;

outv : short_integer;

eq_mode_health_ad : address :- eg_mode_health'address;

pilot_not_busy ad : address :- pilot not_busy'address;

health ad : address := health'address;

outv ad : address := outv'address;

begin

pl := port_num(sl);

p2 := port_num(s2);

p3 := port num(s3);

get_obj (pl,obj,B,eg_mode_health_ad);

get_obj (p2,obj,B,pilot_not busy_ad);

get_obJ (p3,obJ,B, health_ad);

if eq_mode_health = true and

pilot_not_busy = true and

health = true then

destpl := port_num(destsl);

outv := 5;

snd obJ (destpl,obJ,SI,outv_ad,0,0.0);

end if;

retafo;

end trans5;

end a_lead_map_error;

separate (af_start)

package body a_pilot_aware is

pl, p2, p3 : integer;

sl : string (1..16) := "a_pilot_aware/il";

s2 : string (1..16) :- "a_pllot_aware/i2";

s3 : string (1..16) := "a_pilot_aware/i3";

obj : string (1..3) := "obj";

destpl : integer;

destsl : string (1..16) := "system output/if";

function prim4 (afo : af struct) return boolean is

begin

pl := port_num(sl);

p2 := port_hUm(S2);

p3 := port_hUm(S3);

return msg chk (pl) and

msg_chk (p2) and

msg_chk (p3);

end prim4;

procedure trans4 is

eq_mode_health : boolean;

pilot not_busy : boolean;

health : boolean;

outv : short_integer;

eq_mode health ad : address := eq_mode_health'address;

pilot_not_busy_ad : address := pilot not_busy'address;

health ad : address := health'address;

outv ad : address := outv'address;
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begin

pl := port_num(sl);

p2 :- port num(s2);

p3 := port_num(s3);

get_obj (pl,obj,B, eq_mode health ad);

get_obJ (p2,obJ,B, pilot_not_busy_ad);

get_obJ (p3,obj,B, health_ad);

if eq_mode health = true and

pilot not busy = true and

health = true then

destpl := port_num(destsl);

outv := 4;

snd_obJ (destpl,obj,SI,outv ad,0,0.0);

end if;

ret_afo;

end trans4;

end a_pilot_aware;

separate (a f_start)

package body a_previous_waypoint is

pl : integer;

sl : string (1..22) := "a previous_waypoint/il";

obj : string (1..3) := "obj";

destpl : integer;

destsl : string (1..16) := "system_output/il";

function priml (afo : af struct) return boolean is

begin

pl := port_num(sl);

return msg_chk (pl);

end priml;

procedure transl is

eq_mode_health : boolean;

outv : short_integer;

eq_mode_health_ad : address := eq_mode health'address;

outv ad : address := outv'address;

begin

pl := port_num(sl);

get_obJ (pl,obJ,B,eq_mode_health_ad);

if eq_mode_health = true then

destpl := pert_num(destsl);

outv := i;

snd_obj (destpl,obj,SI,outv_ad,0,0.0);

end if;

ret_afo;

end transl;

end a_prevlous_waypolnt;

separate (af_start)

package body a_unaided_sol is

pl : integer;

sl : string (I..16) := "a unaided_sol/l]";
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obj : string (i..3) := "obj";

destpl : integer;

destsl : string (1..16) :- "system_output/if";

function prim2 (afo : af struct) return boolean is

begin

pl :z port_num(sl);

return msg_chk (pl);

end prim2;

procedure trans2 is

eq mode_health : boolean;

outv : short_integer;

eq_mode_health_ad : address := eq_mode health'address;

outv ad : address := outv'address;

begin

pl := port_num(sl);

get_obJ (pl,obj,B, eq_mode health_ad);

if eq_mode_health = true then

destpl :- port num(destsl);

outv := 2;

snd_obJ (destpl,obj,SI,outv_ad, O,O.0);

end if;

ret_afo;

end trans2;

end a_unaidedsol;

separate (af start)

package body a_wm_map_error is

pl, p2, p3, p4 : integer;

sl : string (1..17) := "awm_map_error/il";

s2 : string (1..17) := "a wm_map_error/i2";

s3 : string (1..17) := "a wm_map_error/13";

s4 : string (1..17) := "a wm_map_error/i4";

obj : string (1..3) := "obj";

destpl : integer;

destsl : string (1..16) := "system output/il";

function prim7 (afo : af_struct) return boolean is

begin

pl := port num(sl);

p2 := port_num(s2);

p3 := port_hum(s3);

p4 := port_hum(s4);

return msg_chk (pl) and

msg_chk (p2) and

msg_chk (p3) and

msg_chk (p4);

end prim7;

procedure trans7 is

eq mode_health : boolean;

pilot_not busy : boolean;

health : boolean;

jtids : boolean;
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outv : short_integer;

eq_mode_health_ad : address := eg_mode_health'address;

pilot_not_busy_ad : address := pilot_not_busy'address;

health ad : address := health'address;

jtids_ad : address := jtids'address;

outv ad : address := outv'address;

begin

pl := port_num(sl);

p2 :- port_num(s2);

p3 := port_hum(s3);

p4 := port_num(s4);

get_obJ (pl, obJ,B, eq_mode_health_ad);

get_obj (p2,obj,B, pilot not busy_ad);

get_obj (p3,obj,B,health_ad);

get_obJ (p4,obJ,B, Jtids_ad);

if eq_mode_health - true and

pilot not busy - true and

health - true and

jtids - true then

destpl := port_num(destsl);

outv :- 7;

snd_obj (destpl,obj,SI,outv_ad,0,0.0);

end if;

ret_afo;

end trans7;

end a wm map_error;

separate (af_start)

package body eg_mode_health is

pl : integer;

sl : string (i..17) := "eq_mode_health/il";

obj : string (1..3) :- "obj";

destpl, destp2, destp3, destp4, destp5, destp6, destp7, destp8 : integer;

destsl : string (1..22) := "a_previous_waypoint/il";

dests2 : string (I. 16) := "a_unalded sol/if";

dests3 : string (I. 12) := "a_ecm_env/il";

dests4 : string (I. 16) := "a_pilot_aware/il";

dests5 : string (I. 19) := "a_lead_map_error/il";

dests6 : string (I. 16) := "a_alpha_check/il";

dests7 : string (i. 17) :_ "a_wm_map error/if";

dests8 : string (I. 17) := "a eo radar_des/il";

function prim9 (afo : af_struct) return boolean is

begin

pl := port_num(sl);

return msg_chk {pl);

end prim9;

procedure trans9 is

ivl : boolean;

ovl, or2, or3, or4, ovS, ov6, or7, or8 : boolean;

ivl ad : address := ivl'address;

ovl ad : address := ovl'address;

or2 ad : address :- ov2'address;

ov3 ad : address := ov3'address;

or4 ad : address :- ov4'address;
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or5 ad : address := ov5'address;

ov6 ad : address := ov6'address;

or7 ad : address := ovY'address;

or8 ad : address := orS'address;

begin

pl := port_num(sl);

get_obj (pl,obj,B, ivl ad);

ovl := ivl;

or2 := ivl;

or3 := ivl;

or4 := ivl;

or5 := ivl;

ov6 := ivl;

or7 := ivl;

or8 := ivl;

destpl := port_num(destsl);

destp2 := port num(dests2);

destp3 := port num(dests3);

destp4 := port_num(dests4) ;

destp5 := port num(dests5);

destp6 := port num(dests6);

destp7 := port_num(dests7);

destp8 := port_num(dests8);

snd_obj (destpl,obj,B, ovl ad,0,0.0)

snd_obJ (destp2,obj,B, ov2_ad,0,0.0);

snd_obj (destp3,obj,B, ov3_ad,0,0.0);

snd_obj (destp4,obj,B,ov4_ad,0,0.0);

snd_obJ (destp5,obJ,B,ov5_ad,0,0.0);

snd_ob j (destp6, obj, B, ov6_ad, 0, 0.0) ;

snd_ob j (destp7, obj, B, ovY_ad, 0, 0.0)

snd_obj (destpS,obj,B, ov8_ad,0,0.0)

ret afo;

end trans9;

end eq_mode_health;

separate (af_start)

package body health is

pl : integer;

sl : string (1..9) := "health/if";

obj : string (1..3) := "obj";

destpl, destp2, destp3, destp4, destp5 : integer;

destsl : string (I..16) := "a_pilot aware/i3";

dests2 : string (I..19) := "a_lead_map_error/i3";

dests3 : string (1..16) := "a_alpha_check/i3";

dests4 : string (1..17) := "a wm map_error/J3";

dests5 : string (i..17) := "a eo radar_des/J3";

function priml4 (afo : af_struct) return boolean is

begin

pl := port_num(sl);

return msg_chk (pl);

end priml4;

procedure transl4 is

ivl : boolean;

ovl, or2, or3, or4, or5 : boolean;

ivl ad : address := ivl'address;
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ovl ad : address := ovl'address;

or2 ad : address := ov2'address;

or3 ad : address := ov3'address;

or4 ad : address := ov4'address;

or5 ad : address := ov5'address;

begin

pl := port_num(sl);

get_obj (pl,obj,B, ivl_ad);

ovl := ivl;

or2 := ivl;

or3 := ivl;

or4 := ivl;

or5 := ivl;

destpl :i port_num(destsl);

destp2 :- port_num(dests2);

destp3 := port_num(dests3);

destp4 := port_num(dests4);

destp5 := port_num(dests5);

snd obJ (destpl,obj,B, ovl_ad,0,0.0);

snd_obj (destp2,obj,B, ov2_ad, O,O.O);

snd_obj (destp3,obj,B, ov3_ad, O,O.O);

snd_obj (destp4,obj,B, ov4 ad,0,0.0);

snd_obj (destpS,obj,B, ov5_ad,0,0.0) ;

ret_afo;

end transl4;

end health;

separate (af_start)

with text io, word_io; use text_io, word_io;

package body inputafo is

pl : integer;

sl : string (I..ii) := "inputafo/il";

destpl, destp2, destp3, destp4 : integer;

destsl : string (I..17) :_ "eq_mode_health/il";

dests2 : string (1..17) := "pilot not_busy/il";

dests3 : string (i..9) := "health/il";

dests4 : string (i..8) := "jtids/il";

done,val : boolean;

val ad : address := val'address;

item, value, str : string80;

last,length : integer;

infile : file type;

function inpprim (afo : af struct) return boolean is

begin

pl := port opn (sl);

return not msg chk (pl);

end inpprlm;

procedure getinput is

begin

destpl := port_num (destsl);

destp2 := port_num (dests2);

destp3 := port hum (dests3);

destp4 := port_hum (dests4);

put ("Input file : ");

get_llne (item, last);
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open (infile, in file, item (l..last));

reset (infile, in_file);

while not end of file (infile) loop

get word (infile, str, length,done) ;

if not end of file (infile) and not done then

get_word (infile, value,length,done);

if value (1..4) = "TRUE" then

val :- true;

else

val := false;

end if;

case str (l..length) is

when "EQ_MODE_HEALTH" => snd_obj (destpl,obj,B, val_ad,0,0.0);

when "PILOT NOT_BUSY" => snd_obj (destp2,obj,B, val_ad, 0,0.0);

when "HEALTH" => snd_obj (destp3,obj,B, val_ad,0,0.0);

when "JTIDS" => snd_obj (destp4,obj,B, val ad, 0,0.0);

when others => null;

end case;

end if;

end loop;

close (infile);

pl := port_hum (sl);

snd_obj (pl,obj,B, val_ad,0,0.0);

return afo;

end getinput;

end inputafo;

separate (af_start)

package body Jtids is

pl : integer;

sl : string (i..8) := "jtids/il";

obj : string (1..3) := "obj";

destpl, destp2, destp3 : integer;

destsl : string (1..16) :z "a_alpha_check/i4";

dests2 : string (1..17) := "a wm map_error/J4";

dests3 : string (I..17) := "a eo radar_des/i4";

function priml7 (afo : af_struct) return boolean is

begin

pl := port_num(sl);

return msg_chk (pl);

end priml7;

procedure transl7 is

ivl : boolean;

ovl, or2, ov3 : boolean;

ivl ad : address := ivl'address;

ovl ad : address := ovl'address;

or2 ad : address := ov2'address;

or3 ad : address := ov3'address;

begin

pl := port_num(sl);

get_obj (pl,obJ,B, ivl_ad);

ovl :z ivl;

or2 := ivl;

or3 := ivl;
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destpl := port_num(destsl);

destp2 := port_num(dests2);

destp3 := port_num(dests3);

snd_obj (destpl,obj,B, ovl_ad, O,O.O);

snd obj (destp2,obj,B, ov2_ad, O,O.O);

snd_obj (destp3,obj,B, ov3_ad, O,O.O);

ret_afo;

end transl7;

end jtids;

separate (af_start)

package body pilot_notbusy is

pl : integer;

sl : string (1..17) := "pilot_not_busy/il";

obj : string (1..3) := "obj";

destpl, destp2, destp3, destp4, destp5 : integer;

destsl : string (1..16) := "a_pilot_aware/i2";

dests2 : string (1..19) := "a_lead_map error�J2";

dests3 : string (1..16) := "a_alpha_check/i2";

dests4 : string (1..17) := "a wm map_error/J2";

dests5 : string (1..17) := "a eo radar_des/12";

function priml3 (afo : af_struct) return boolean is

begin

pl := port_num(sl};

return msg_chk (pl);

end priml3;

procedure transl3 is

ivl : boolean;

ovl, or2, ov3, ov4, ov5 : boolean;

ivl ad : address :- ivl'address;

ovl ad : address := ovl'address;

or2 ad : address := ov2'address;

or3 ad : address := ov3'address;

or4 ad : address := ov4'address;

or5 ad : address := ov5'address;

begin

pl := port_num(sl);

get_obJ (pl,obj,B, ivl_ad);

ovl := ivl;

"or2 := ivl;

or3 := ivl;

or4 := ivl;

or5 := ivl;

destpl :_ port_num(destsl);

destp2 := port_num(dests2) ;

destp3 := port_num(dests3);

destp4 := port_num(dests4);

destp5 := port_num(dests5);

snd_obj (destpl,obJ,B, ovl_ad,0,0.0);

snd_obJ (destp2,obj,B, ov2 ad,0,0.0);

snd_obJ (destp3,obj,S,ov3_ad,0,0.0);

snd_obj (destp4,obj,B,ov4_ad,0,0.0);

snd_obj (destp5,obJ,B, ovS_ad,0,0.0);

retafo;

end transl3;
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end pilot_not_busy;

separate (af_start)

package body system_output is

pl : integer;

sl : string (1..16) := "system_output/il";

obj : string (1..3) := "obj";

function prim20 (afo : af_struct) return boolean is

begin

pl := port_num(sl);

return msg chk (pl);

end prim20;

procedure trans20 is

ivl : short_integer;

ivl ad : address := ivl'address;

msg : string (1..14) := "ask_question_#";

begin

pl := port_num(sl);

get_obj (pl,obj,SI,ivl_ad);

put_line{msg);

put ( ivl) ;

new line ( 2) ;

ret_afo;

end trans20;

end system_output;
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4. A Description of the AFA Activation Framework Software

4.1 Introduction

This section describes the concepts behind AFA, the Ada version of the Activation Framework software.

This section describes the implementation of AFA and details procedure calls used at the applications level. It
also _scribes the Ada version of the LMS list management system.

4.2 AFA Concepts

AFA is a software tool for use in developing intelligent real-time systems such as that shown in figure
4.1. Such systems capture and process data from sensors and use this data as the basis for intelligent control of

actuating devices. These systems can interpret data from multiple sensors, combine this with operator input,
and build a model, the so-called "world model", of the system's external environment. This world model is

used for planning the actions of the system and as the basis for decisions about advice to give to operators or
how to adapt automatic control strau_gies.

Not all intelligent real-time systems have all the functions shown in figure 4.1, but all have more than
just the signal processing and control algorithms characteristic of conventional real-time systems. These sys-
tems arc called intelligent real-time systems because they have many of the event driven characteristics of real-
time systems and yet they contain higher level intelligence which permits the systems to perform in a more
flexible manner than conventional real-time systems.

OPERATOR

INPUT

DATAFUSION
&

WORLDMODEL
BUILDING

DATA IINTERPRETATION

SIGNAL

PROCESSING

@

PLANNING

I ADAPTATION
& DECISION

MAKING

L CONTROL= ALGORITHMS

ADVICE
FOR

OPERATOR

Figure 4.1 An Intelligent Real Time System
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AFAprovidesa structuredframeworkfor buildingreal-timeintelligentsystems.This framework
includesanexecutionenvironmentwhichprovidessupportforthoseactionswhicharecommontomostreal-
timeintelligentsystems.Theseactionsincludethepre-emption,scheduling,andexecutionof independentcode
modulesona heterogeneousnetworkof computers;therouting,prioritization,anddeliveringof messages
betweencodemodules;thedynamicmanagementof memoryandmanagementof listsof dataobjects;the
automaticencodinganddecodingof dataobjectsasmessages;andtheprovisionof mechanismstoallowfor
rapidchangesinthefocusofattentionofthesystem.

ConceptuallyAFAprovidesauniforminterfaceformostapplicationscodemodulesirrespectiveof the
computerhardwareoroperatingsysteminuseatthatnodein thenetworkofcomputers.As shown in figure
4.2, AFA is intended to provide a uniform execution environment so that the overall application system can
make effective use of all the processors for cooperative parallel processing. AFA currently works in conjunc-
tion with MSDOS but Unix and VMS versions are expected to be developed in the future as are stand-alone
versions which will work in environments such as a 680x0 based shared memory multiprocessor. AFA has

been designed to make it easy to port to other environments by recoding about a hundred lines of assembly lan-
guage code which saves and restores the processor's register state.

IBM - PC UNIX WORKSTATION

68000 BASED

MULTI-PROCESSOR DEC - MICROVAX

AFFRAMEWORK ]

MS-DOS I

AFFRAMEWORK]
FRAMEWORK

AFFRAMEWORK ]

VMS I

NETWORK

Figure 4.2 AFA Provides a Uniform User Interface for Applications
code modules Activation Framework Object

AFA uses an object-oriented message-based paradigm. Applications are coded in the form of Activation

Framework Objects (AFOs) which are Ada language subroutines that communicate by sending and receiving
messages as shown in figure 4.3. AFA provides the mechanisms necessary for the scheduling of the execution
of the AFOs and the transmission of messages between them. AFA also provides other necessary functions
such as list management and message encoding and decoding. AFA is capable of supporting various communi-
cations mechanisms between the processors including shared memory, local area networks, serial data links,
and satellite links. In the future, AFA will be capable of execution on a group of widely distributed processors.

Most AFOs are programmed in a template-like format:

get_message()

perform algorithm

send_message()
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Figure 4.3 An Intelligent Real Time System coded
using Activation Framework Objects (AFOs)

This makes the AFOs easy to code. This also makes it simple to develop translators from other representa-
tions, such as evidence flow graphs to a set of AFOs.

While AFOs are written as Ada procedures, they are executed as parallel code threads which have their
own register state and their own stacks. As events such as message delivery occur within the system the impor-
tance of each AFO changes dynamically, and the currently executing AFO can be pre-empted by another AFO
if the other AFO becomes more important to execute.

The benefits of using AFA for developing intelligent systems are:

1) AFA minimizes software development time by providing the routines common to all intelligent real-time
systems within one integrated framework.

2) AFA's object oriented approach allows programming team members to develop and test AFOs indepen-
dently thus minimizing elapsed time for systems development.

3) The standard interface between the AFOs and the AFA run time environment allows the development
and simulation of a system of AFOs on a workstation before being transferred to embedded hardware.

4) AFA's focus-of-attention scheduling mechanism makes quasi-optimal use of processor and communica-
tions resources, thereby reducing the cost of the computer hardware required relative to a conventional
real-time system.

5) AFA's standard template format for programming permits rapid development of applications code mod-

ules and makes the development of automatic translators from evidence flow graphs a straightforward
process.

AFA is linked with applications AFOs to form a run-time module for each processor which contains a
framework as shown in figure 4.4. The framework is responsible for providing a number of support services:

a) Scheduling of the AFOs within a framework according to the dynamic estimation of their importance,
which is based on the overall system's current state and goals.

b) Delivering messages between local AFOs and between local AFOs and those on remote frameworks,

dynamically prioritizing message delivery according to the importance of the messages.

c) Providing dynamic memory management through the list management subsystem.

d) Performing automatic encoding and decoding of data in messages to maximize delivery efficiency and to
minimize the amount of user coding required.
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Figure 4.4 An Activation Framework

AFA is designed to support real-time systems which are demanding of resources and yet must function

within strict time constraints. The philosophy behind the design of AFA is to build intelligent systems which

are able to perform the best they can within the constraints of available cpu, memory, and communications

resources,

Within an intelligent real-time system, it is desirable to execute many pieces of code at the same time. As

can be seen from figure 4.1, planning can take place in parallel with data interpretation, adaptation, and control.

It is not possible to determine ahead of time which is the most important action to carry out when there is con-

tention for processor resources. In some cases it may be very important to collect data while in others it may be

critical to devote all the resources into planning how to deal with an emergency.

In conventional real-time systems, the problem of allocating processor time has traditionally been solved

by allocating a fixed time slice of each processor to each function the system has to perform. A fast enough

processor is then used to make sure that the algorithms can process their input data within their time slice.

Intelligent systems typically evaluate alternatives. In doing this, they build and search trees and fists whose size

depends on the input data. Thus the processor and memory requirements of an expert module can vary widely

for different inputs. If fixed time slice scheduling were used then it would be necessary to curtail the searches

of some modules while there was available time unused by other modules. AFA solves this problem by dynam-

ically varying the priority of the modules according to their current importance levels. Thus data coUection or

planning might get the most processor time at one instant while background processor diagnostics might be run

at another when there is no other action required.

In conventional real-time systems operation, the processing of input data is given high priority to ensure

that this data is processed prior to the arrival of new data. This is normally achieved by performing the input

data processing in the interrupt handlers used for data input. As interrupts have high priority they preempt exe-

cution of higher levels of the system such as planning. This can be very detrimental in emergency situations

when it may be desirable to cease processing new input data and instead focus on planning how to deal with

the emergency which has already been detected.

In a conventional scheme, valuable processor time is taken up processing data which may not be neezled.

In AFA, an interrupt handler sends its data in the form of a message to a processing AFO. The action of send-

ing the data message raises the importance of the AFO. Normally this will cause the AFO to be executed and

process the data. If, however, the data processing AFO is not the most important function at that time then it
will not be executed, allowing, for example, a planning AFO to take precedence. This may result in data being

delayed before it is processed but that may be preferable to having the system fail to deal with some
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catastrophic emergency.

Conventional time sharing system schedulers determine which task to execute next based on the past his-
tory of tasks. Tasks which are compute bound get low priority whereas tasks which are doing terminal I/O get
high priority. This may be just the opposite of what is required in an intelligent real-time system. In an intelli-

gent real-time system, knowledge about what is the most important thing to do next is contained in the applica-
tion modules. A data interpretation module may correlate two pieces of input data to discover that a robot is

about to collide with an obstacle. It is essential to raise the priority of the brake control module to a high level
as soon as it receives the message from the data interpretation module. This knowledge is contained in the data
interpretation module at the time it sends the message.

For an intelligent real-time system, the problem is how to dynamically determine the importance of exe-
curing code modules when the knowledge is contained in modules executing on different machines. The mech-
anism used must offer quick response and yet consume only a small amount of resources for its execution. The

approach used in AFA is to have the AFO sending a message place an activation level on the message which is
a measure of the importance of the message. These message activation levels are then used as the basis for

computing how important it is to execute the recipient AFO. An AFO with a number of important messages on
its input queue is more important to execute than one with few low activation messages. Since this information
is carried along with the data between AFOs very little overhead is required to determine which AFO is most
important to execute on each processor. This distributed approach is in contrast to schemes in which the impor-
tances are all collected at some central location, the modules to run are selected, and then the scheduling infor-
marion is broadcast to all processors. Such centralized schemes are slow to respond and have high overhead
relative to the distributed importance estimation scheme used in AFA.

AFA supports a number of refinements on this basic scheme. AFOs can also be assigned a global impor-
tance. Their importance estimation from message activation levels is then multiplied by their global impor-
tance. This keeps the importance of messages from an unimportant AFO being given too much significance in

the scheduling decision. It also stops background AFOs, such as data-loggers, from being raised to high impor-
tance by the arrival of a message, which although important in a global sense, is not different in importance
from any other message for the purposes of data logging. Messages can also be given deadlines after which the
data in them is no longer valid. Messages closest to their deadline are delivered first if they are of equal impor-
tance, otherwise the most important message is delivered first. Messages beyond their deadline time are elimi-
nated from the system. In this way AFA optimizes the use of communications resources according to applica-
tions knowledge encoded in the messages sent between AFOs.

A major problem for real-time AI systems is dynamic memory management. In classical real-time sys-
tems memory space is pre-allocated for every object which the system can possibly access. Real-time intelli-

gent systems build lists and trees whose size depends on the input data. These represent its memory and its
evaluation of alternatives. If the space for each type of object must be pre-allocated, then some modules will
not be able to carry out their function properly because they do not have enough memory, while there is excess
memory unused by other functions. In AFA this problem is addressed through the use of a common memory
heap which can be accessed through the list management system CLMS).

LMS enables users to write data objects onto lists contained in the heap and to release the memory used

by objects when they are no longer needed. This scheme enables users to make use of the total amount of
memory available to be shared amongst the AFOs according to their needs. By requiring the user to explicitly
release memory space occupied by modules, the user is given control of when to expend processor rime in

recovering memory. Usually this results in breaking up the "garbage collection" time into small increments
during execution of the system. This is in contrast to many LISP systems which are infamous for taking tens of

minutes to garbage collect memory after the last free memory cell has been used up. A real-time system can
afford frequent execution of a routine taking a few hundred microseconds for explicit memory recovery
whereas taking time-out to garbage collect memory for tens of minutes can result in undesirable side effects. It
should be remembered however, that the total amount of time spent in garbage collection is no smaller.

A major problem for programmers developing a message-based object-oriented system is the encoding

and decoding of messages. Using conventional techniques, if the user wished to send data which, for example,
consisted of a list of lists of objects consisting of two floating point numbers and a string, he would have to
develop a substantial body of code to serially encode this into a message and then to decode the message back
into a list of lists of objects upon receipt. This encoding and decoding take considerable CPU rime which can
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be avoided by simply copying the data structure if the message is to be delivered within the same shared mem-

ory, for example between AFOs running on the same processor.

Conceptually, AFA overcomes this problem by using Generalized Objects (GOs). A GO consists of a

name, a Data Definition Language (DDL) description, and a data structure. The name is to allow dynamic

binding by name to a GO and the DDL describes the data structure. The DDL for the list of lists example

would be (L(L(ffs))) indicating a list of objects whose sole entry is a list consisting of two floating point num-

bers and a string. The memory space for GOs is obtained using LMS. Currently in AFA only simple objects

consisting of a single integer or a single boolean have been implemented.

When a user wishes to send a data object in a message, he codes it as a GO using AFA support routines.

Then the user calls the msg_send0 routine which determines whether the destination AFO is local or on

another processor. If the AFO is local, then the DDL is used to make a copy of the existing structure which is

passed to the recipient AFO as part of the message. If the AFO is in another processor, then the DDL is used to

serialize the data structure in a standard format for inclusion in the message. When a serialized message is
received, the DDL is used to decode the serial data stream and convert it back into its original form for the

recipient AFO. The AFA message delivery mechanism does not encode and decode messages if the sending
and receiving AFOs share memory. This is performed without programmer supplied directions and results in a

reduction of processing resources required for message delivery in the shared memory case.

Potential problems arise when processors with different characteristics are used in a system. For example

some processors have different byte orders in strings and words, some processors have different representa-

tions for integer and floating point formats, and some processors use different representations for characters.

This will be overcome in future versions AFA by using a standardized representation for the serial form of

messages. Messages are converted from local formats into the standard format for transmission and converted

again upon reception. In this way AFA can provide the functions of the presentation layer of the ISO network
standard.

4.3 AFA Internals

In an AFA system, AFOs are pre-assigned to processors and do not migrate. This is because in most

real-time systems there is not time to migrate processes in the event of a fault; rather the system must be

designed to continue to operate with the resources that are left. However, redundant AFOs may be included in

AFA load modules for processors and will not consume any processor resources (other than memory) until

they are activated by the arrival of messages.

Figure 4.5 shows how an AFA load module is created for a processor. The user specifies which AFOs ate

to be included in the load module by listing them in a frame file. This frame file is translated by the AFA trans-

lator to create a main program for the load module. This is compiled, along with user-coded AFOs, to produce

relocatable binary object modules. These modules are then linked with the AFA libraries to produce a run-time

executable object module which contains all the functions of an AFA framework.

When first executed, the framework initializes all the AFOs by creating a data structure for each AFO

which contains all the information about the AFO including its register state, allocating stack space for each

AFO, and creating the input ports for each AFO. Once this is done, the framework selects the AFO with the

highest initial importance (as specified in the frame file) and executes it.

When an AFO sends a message to another AFO, the execution of the sending AFO is pre-empted and the

importance of the recipient AFO is increased due to the delivery of the message, as shown in figure 4.6. If the

sending AFO is still the most important AFO to run then the AFO execution is continued by a return from the

call to send the message. If, as a result of message delivery, the recipient AFO has become the most important,

then the state of the previously executing AFO is saved and execution of the most important AFO is started. If

the AFO was previously pre-empted then execution is continued from the state the AFO was in when it was

pre-empted. Otherwise, execution starts from the beginning of the AFO.

AFOs specify importance values for messages when they send them. These importances are specified on
a 1-to-10 scale and represent the relative importance of the messages from the local viewpoint of the sending

AFO. These importances are multiplied by the global importance of the sending AFO, again on a 1-to-10 scale,

to obtain the activation level of the message being sent. This activation level is used to prioritize the transmis-

sion of messages and is also used in the computation of the importance of executing the recipient AFO.
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Figure 4.5 Creating an AF Run-Time Module

By default the importance of the receiving AFO, when a message is delivered, is computed by adding up
the importances of all the messages on its input ports and multiplying by the global importance of the recipient
AFO. Other ways of calculating the importance can be specified by providing an importance function calcula-
tion procedure for the AFO.

The global importance of an AFO is based on the importance of the AFO in the overall system. Thus a
data logging module might have a low importance whereas an emergency response module might have a high
importance. This allows the modules to be written, and to prioritize messages, independent of their imlXalane¢

in the final system. These global importances can be set a priori in the frame file. They can also be changed
dynamically by sending a message to the input port of the framework to which the At:O, whose priority is to be
changed, is attached.

AFOs can have multiple input ports as shown in figure 4.7. Each port on an AFO has a name. Tim

default port with which every AFO is created is called "std__port". Other ports can be created dynamically as
needed. Messages sent within a framework are sent to a specified AFO and port by opening a port by name
with the form "afotport". The open routine returns an index into a framework port table which is then used as
the destination identitieation for messages. In future versions, when messages are sent between frameworks,

the port id (index into the port table) will be converted into a full destination address of the form
"framedafo/port" which becomes the destination field of the message. This destination name will be converted

into a destination port id upon arrival of the message at the destination framework.

In future versions, messages destined for AFOs on other processors will be sent to surrogate AFOs on
the local processor which are responsible for their delivery using interrupt or DMA handlers or using network

servers if AFA is running on top of an operating system such as UNIX. Messages arriving from other procea-
sors will be received by AFOs designed for this purpose. Execution of these AFOs will be initiated by tbe
delivery of messages onto their input queues by the input device interrupt handlers, or they may wake
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Figure 4.6 Dynamic Prioritization of Code Module Execution

themselves up periodically to collect data from a network server.

AFA provides, and uses, dynamic memory allocation by using the List Management System (LMS)
library. Lists are implemented as doubly linked lists as shown in figure 4.8 to enable rapid traversal of lists in
either direction. A full set of library function calls is provided which allow data objects to be written and
retrieved from lists. Memory is allocated automatically, as needed, when lists are created or new elements are
written into lists. This memory is released automatically when elements are deleted from a list.

The LMS is also used to manage the Lists used internally within AFA. Information about the AFOs on a
processor is kept in a list of AFO object structures. Message queues are also built using LMS.

Messages are queued on a pending queue on each AFO input port. The pending queue is a list of mes-
sages managed using LMS. When messages are delivered onto the AFO's port they are placed on the pending

queue in order of their importance and closeness to deadline. When the AFO wishes to access a message it
calls get_msg0 which causes the message to be removed from the pending queue and placed in the AFO's
active message pool. AFOs can access data from messages in their active pool using the pool entry index
returned from the call to get_msg0.

The importances of messages on all of an AFO's pending queues plus the importance of all messages in
its active message pool are used in determining the importance of an AFO. In this way the importance of the
AFO is not reduced simply because it has accessed a message. An AFO can automatically release all messages

from its active pool by calling return0 after execution.

The format of messages in memory is shown in figure 4.9. Each has a TO_AFO_ID and a
LOCAL TO AF ID. The IDs are indexes into a table of ports which is constructed by the translator from the
frame file. This table contains the full string names of each of the ports and the addresses of the port structures
for each of the AFOs on the local processor. The TO_LOCAL AF ID is used to determine to which port on

the local processor the message should be delivered. The TO_AFO_ID is used to encode the port to which the
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message is to be delivered as an ascii string if the message has to be serialized for delivery to another proces-
sor. The FROM_AFO_ID is included to allow a reply to be sent, if required, by the recipient AFO. This is
translated into a string if the message is encoded serially for transmission to another IXocessor.

Messages contain an event type field, an activation level field (which is a measure of their importance),
and a deadline by which they must be processed or dropped from the system. The data part of messages is in
the form of a Generalized Object (GO).

A generalized object, figure 4.10, contains pointers to three elements: a name siring, a DDL string, and
the Data Object. The Data Object may in future versions be a List or an object which contains a pointer to a
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Figure 4.9 Format of AF messages in memory.

List. This list of lists of lists recursion is only limited by the amount of available memory. It will be useful for
building and passing tree structures. The name is used for dynamic binding to a data object when the message
is received. The DDL is a complete concise description of the data structure so that it can be copied or serial-
ized for transmission.

GO A
w NAME

DDL

DATA OBJECT

Figure 4.10 Generalized Object.

As shown in figure 4.11, users can have control over system level functions by providing initialization,
priming, and importance functions as well as the transfer function which must be provided for every AFO.

These procedures can be specified in the frame file and allow for flexibility in use of AFA. The initialization
function for each AFO is called as soon as the data structures for the AFO have been created. This procedure
can be used to perform such functions as opening additional ports and forming linkages with interrupt handlers
for data I/O.

An AFO is not allowed to run unless it is primed. By default an AFO is considered to be primed if it has

any messages queued on any of its ports. This can be over-ridden by a priming function which may require that
messages be present on all ports before the AFO is allowed to execute. Users can also provide their own impor-
tance function so that difference evidence computation mathematics can be used other than the default incre-

mental evidence method of adding up the activation levels of all the messages.



-66-

'-N ITIALIZATION_'_

FUNCTION J

PRIMING *)FUNCTION

_MPORTANCE

FUNCTION *_

TRANSFER)FUNCTION

RUN AT INITIALIZATION TIME

RUN AT MESSAGE OR

EVENT DELIVERY

RUN IN CONTINOUS LOOP

* SYSTEM DEFAULTSPROVIDED
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4.4 Coding AFOs

Users of AFA decompose their systems into AFOs which they code as Ada language subroutines. An
example of an AFO is shown below:

procedure temp_decis (afo_st : in out afo_struct) is

old switch : integer;

err : integer;

port_id : integer;

temp : float;

temp_ad : address := temp'address;

in ddl : char := 'F';

switch : integer;

switch ad : address := switch'address;

out dd[ : char := 'I';

t : string(l..ll) := "temperature";

t2 : string(l..9} := "temp_cont";

s : string (l . . 6) := "switch";

mid : message_handle;

begin

mid := get_msg;

err := bind (mid, t,in_ddl,temp_ad);

if err > 0 then

null;

end if;

if temp > 75 and old switch = I then

switch = 0;
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end if;

if temp < 65 and old switch = 0 then

switch :: I;

end if;

port id :- port_open (t2);

send_obj (port id, l,s,out_ddl,switch_ad, lO,rel_time(0.5));

old switch := switch;

end temp_decis;

A summary of salient points about AFOs is given below.

1) AFOs are self contained entities. Some, such as the example here, simply receive and send messages.

Others interact with sensor or display hardware, either directly or through associated interrupt routines.

They can be developed and debugged separately before being integrated into an overall system.

2) AFOs do not share memory variables. This is so they can be run on any processor and can be pre-empted

at any time in their execution with no danger of deadlock.

3) While AFOs are written as Ada language procedures, they are executed as asynchronous tasks. Each has

its own stack which is re-initialized every time the AFO is executed from its entry point. The AFO can

be suspended, that is have its state saved, every time it calls get_msg0 or send obj0, if it is not the most

important AFO to be executed at that time. If it is suspended, it will be resumed where it left off once it

becomes the most important AFO in its local processor once more. When an AFO performs a return to

the framework, it is then executed from its initial entry point the next time it becomes the most important
AFO to run.

4) Extensive checking is done on the content and format of messages. In a distributed message-based sys-

tem, one of the biggest problems in software development is in assuring that two modules agree on the

format of messages to be sent between them. Detection of problems in which programmers change a

message format in a sending AFO but not in a receiving AFO are handled easily in AFA.

5) All AFOs have names, and messages are sent to AFOs by name. This allows the development of AFOs

without concern for which processor they will ultimately be executed. This allows the simulated execu-

tion of a whole system on a workstation prior to porting it to some multi-processor embedded environ-
ment.

6) Users do not have to be concerned with the format or encoding of messages. In future versions of AFA

messages will exist in a number of forms. They will consist of a message header with a pointer to its

constituent parts, they will exist as a compact serialized bit stream for transmission over high-speed bit-

serial data links, or they will exist as a sequence of bytes for transmission over low speed asynchronous

serial data links such as RS232c. These transformations will take place transparently to the user.

7) Messages can be typed. The type number allows the recipient AFO to switch between different sections

of code to process received messages of different types.

8) Each AFO has multiple input ports on which messages are queued. For each input port, the messages

are queued in order of importance and then messages of equal importance are queued in order of their

closeness to their deadline. AFOs can access and process their input queues in any manner the program-

mer chooses. Get_obj0 gets the message from the top of the queue. More specifically, each port has a

pending and an active queue. Arriving messages are queued on the pending queue. A call to get_obj0

removes the top message from the pending queue and transfers it to the active pool. The message id

value returned by get_msg0 is a handle by which the message can be accessed by the programmer for

further manipulations on the message.

9) Messages are delivered by the framework as soon as they are sent by a call to send msg0. If the recipi-

ent AFO is local, the message is delivered onto its input port's pending queue. If the recipient AFO is on

another processor, then the message is delivered to the AFO designated to transmit the message to its

remote destination.

10) The delivery of a message may cause the recipient of the message to become more important than the

sender, and, if they are executing on the same processor, a switch in which AFO is being executed is
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made.Thisisahighlydesirablepropertyasit allowsemergencyactionstorapidlyripplethrougha sys-
tem without special coding being needed to accomplish this effect.

11) Messages are given an importance by their sender. This importance is an integer number which is multi-

plied by the global importance of an AFt (another integer) to obtain the activation level of a message.

When there is contention for a communications link, messages with the highest activation level are given

priiority, and within that, messages closest to their deadline are given priority.

12) When writing AFOs, the framework to which they will be attached and their global importances are not

specified. These are set at system configuration time using frame files which specify the AFOs attached

to a framework and their initial global importances. AFOs can modify their global importances. This

can also be coded so that a "manager" AFt sends messages to other AFOs telling them to modify their

global importances which then results in a change in systems behavior. This can even be encoded hierar-

chicaUy to give a similar effect to a military or management command structure.

13) The importance of an AFt, for scheduling purposes, is computed by adding up the activation levels of

all messages on its input queue, adding the activation levels of all messages in its active pool, and then

multiplying by the global importance of the AFt. The importance of the AFOs is evaluated every time a

call to the framework is made (such as by send obj0 and get__obj0) and the most important AFt is exe-

cuted. If the AFt was previously executing when it was suspended, it continues from where it left off. If

it completed its execution with a return or has never been run then it is started executing at the beginning

of the AFt with an empty stack.

14) Messages are dropped from the system once they pass their deadlines. This saves the system from

becoming cluttered with messages that the system does not have time to process. This also places some

fault tolerance constraints on the coding of AFOs. They should not be coded to send a message and then

to wait for a reply. Rather they are coded to send a message requesting information and have a separate

code section (triggered by a specific message type) to respond to the reply if it ever comes. This is panic-

ularly appropriate to distributed intelligent real-time systems in which message delivery within a finite

time can never be guaranteed.

4.5 The Frame File

The frame file is used to specify which AFOs run on a particular processor. An example frame file is
shown below:

FRAME PCAT ; sets the name of the frame

AFO get temp i0 0 ; declares an AFO whose name is

; importance of i0 units and no

; importance

get_temp with a global

initial internal

AFO temp decis 20 0 ; declares an AFO whose name is temp_decis with a global

; importance of 20 units and no initial internal

; importance

AFO serial IO 30 i0 ; declares an AFO whose name is serial IO with a global

; importance of 30 units and an initial importance

; of 10 units

EXTERN temp_cont serial_IO ; declares that temp_cont is an AFO on another

; framework to which

; messages may be sent and to send messages

; to the serial IO AFO for delivery to this AFO

There are a number of points to be noted here:
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1) Framefileshaveoneentryperline.Anythingfollowingasemicolonisacomment.
2) AFAhasnolimitonthelengthof AFt namesbut,asthcsearesubroutinenames,theAdacompilerused

mayimposesomelimitationonnamelength.
3) Frameshavenameswhichmustbegloballyunique.
4) The decision of which AFOs are assigned to which processor is left to the user as this depends on the

performance characteristics desired. These decisions are easily changed by simply modifying the frame
files to move AFOs from one frame to another.

5) If messages are to be sent to an AFt on another processor, then this must be declared as EXTERN in the

frame file and the surrogate AFt to which messages are to be sent for transmission designated. This

allows for the checking of message destinations during message transmission.

4.6 Message Transmission

Messages sent within the same framework are created as soon as send_obj0 is called and then a pointer

to the created message is placed in the recipient AFO's pending queue. There is no copying of any dam except

the name, DDL, and data object supplied by the user. The reason these are copied is that the AFt can modify

these as soon as a return is made from send_msg which may be before the message has been processed by its

recipient.

In future versions of AFA, messages to be sent externally will be queued on the input port of the surro-

gate AFt designated in an EXTERN statement in the frame file. This AFt will then be responsible for deliver-

ing the message to a corresponding AFt on the recipient frame over some communications network or data

link which it interfaces to. The user will be responsible for ensuring that the communications AFOs are set-up

in such a way as to obtain correct routing of messages. Messages may be routed through intermediate nodes if

their frame files contain appropriate EXTERN statements.

A message arriving at a framework over an external data link will have a destination port address,

encoded as an ascii string, inside the message. This destination port address will be checked against the port

table and, if the port exists on the local processor either directly or through a surrogate, then the message will

decoded and delivered onto the destination AFt port. Decoding is done by the initial network recipient AFt

to convert the message from its bit serial form into the memory data structure form of a message. The message

is hten delivered, and AFt execution is swapped if the change in importances warrants this action.

In future versions, if a message arrives at a framework and the destination port does not exist then a port

will be created, given an ID in the port table, and the message will be queued on the port until the port is

opened. The reason for this action is that future versions of AFA will provide the capability to create ports

dynamically, and messages may arrive for a port before it is created.

Messages arriving from another framework may have a return port address which is not in the local port

table. In this case an entry will be created in the port table with a surrogate AFt specified by the network

receiving AFt (usually itself as these AFOs will usually handle both the transmission and reception of data.

4.7 Application AFO Calls

This section describes procedure calls which are commonly used by applications AFOs. Initialization of

AFOs is usually done automatically by the main program generated from the frame file by the translator pro-

gram.

The user is required to provide a transfer procedure for each AFO. The user may provide an initializa-

tion function which is called with an argument which is the AFO structure - any changes can be made to the

AFO. This routine is called at initialization time by afo_init. This initialization routine may establish linkage

with an interrupt routine and may send messages to ports which have already been created. Such message

delivery will not result in any task swapping until all of the AFO's have been initialized. If this routine is

specified as NULL in the frame file (fwork.afa) then it will be ignored.

Users can provide a priming function which is called with the AFO's structure. This is called when a

message is delivered and is expected to return true/false meaning the AFO's priming status was updated or

not. If the priming function is specified as NULL, then the AFO is marked as primed as soon as a message

arrives. By default, an AFO is marked as not primed once it has no messages on any input port or in its active
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pool. If a priming function is provided, it will be called whenever messages are released or removed because

their deadlines pass, so that priming can be recalculated.

Note that the importance of an AFO is updated whenever a message is delivered irrespective of whether
it is primed on a message. This importance is only used to schedule an AFO. This allows the importance level

to be computed incrementally rather than having to traverse all the messages in an AFO's ports and message
pool in order to determine its current importance.

The following are routines which can be called from the transfer function of the AF'O:

function port_hum(name : string) return integer;

-- name is the string containing local port name in the form "afo/port"

Returns local port id corresponding to name. Port must previously have been

created. "std_port" is port 0 which is defined by STDPORT.

procedure get msg(n : integer;objname,ddlname : string; obJ_address : address);

-- n is the local input port id for AFO -> by convention port 0 is the default

-- port named "std port"

-- obJname = name of data object

-- ddlname - ddl of data { only short integer and boolean supported now)

-- SI = short integer and B = boolean

-- obJ_address _ address of data object which should receive data

Gets the most important message which is closest to its

deadline from the specified input port. Overlays the data object in this

message with obJ address. Messages are checked for deadlines and will

not be transferred if they are past their deadlines. Instead these

messages will be discarded and the next message on the pending queue

selected.

procedure rels_msg(afonum : integer; port : pt struct; msgnum : integer);

-- afonum - number of afo in afolist

-- port z port in afo

-- msgnum - number of message in portlist pending queue

Releases a message from the AFO's queue, freeing up its memory

space and reducing the importance of the AFO by removing its activation

level from the importance calculation. All messages are released from

the active pool when the AFO's transfer function performs a return to

its execution loop.

pointez bind_msg(msg : integer;go_name, ddl : string);

-- msg is the message event id returned from evnt_get()

-- go name is the pointer to string containing name of object to be bound to

-- ddl is the pointer to string containing DDL expected for data object

Performs name binding action on GO contained within message. This

function will scan the list of GOs in a message and attempt to find one

whose name matches the go_name argument. It then checks the that the

DDL of the GO in the message is compatible with the ddl string given as

an argument to bind msg. If both these tests are passed, then

blnd msg() returns a pointer to the data object. If bind_msg() cannot

find the named object, then a value of NOTFOUND is returned and if the

DDL does not match then a value of DDLBAD is returned. DDL is not

checked if DDL call argument is NULL.

procedure snd_obJ(port_id : integer;obJ_name,ddl : string;

data : address;importance : integer;deadline : duration);
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-- port_id is the id of port to send message to

-- obj_name is the pointer to name string for object

-- ddl is the pointer to ddl string for object

-- data is the pointer to data object

-- importance is the importance of object

-- deadline is the relative amount of time from the current time

This copies the object name string, ddl string, and data object and

then builds a memory format message containing a list which has a

single GO with pointers to these objects. Snd obj sets the to_port_id

in the message to the port_id specified in the call and sets the reply

port id to the default port for the AFO. Snd obj multiplies the

importance of the message by the global importance of the AFO to obtain

the activation level and inserts this into the message body along with

the deadline and time of origination. Snd_obj then calls af_deliver() to

deliver the message.

Messages have a deadline specified in relative Ada durations. Messages

older than their deadlines are discarded. If the deadline is

specified as zero, then the message has an infinite lifetime.

function chk_msg(port_id : integer)return integer;

-- port_id is the local port id of an afo.

Checks to see if there are any messages on the pending queue of the port.

procedure ret_afo;

-- Terminates the transfer procedure for an afo.

Causes a transfer from one afo to the frame afo.

4_ AFO lnitial_afion Procedures

C_ls to these procedures are norm_ly generated by the translator program when it transla_s the frame
file into a main program for an AFA load module.

procedure fr init(name : string;stk_adr, sav_addr : address;);

-- Creates frame structure and port table and the "frame" afo whose id - 0.

-- The stack address is store the address of the stack into the afo structure.

-- name is the pointer to name of framework.

-- The save address is the address of the afo's machine state save area.

procedure afo init(fptr : access;name : string;class,init, prime, import : integer;

trans : address;globimp, stacksz: integer;

stk_adr, save_adr : address)

-- Creates the AFO's af struct, puts it on the list of af_structs,

allocates its stack and initializes the register state

-- fptr is the pointer to frame structure returned from framinit()

-- name is the name of AFO

-~ class is the class of the afo.

-- inlt is the number of the initialization routine - if NULL then there is no

initialization routine. Init is called with pointer to af struct

for AFO after structure has been created by afoinit

-- prime is the number of the priming function - will be called after message

delivery to determine if AFO can run. If specified as NULL

then AFO will be considered primed whenever there are any

messages queued on any of its ports. ?rime is called with a

pointer to the port structure, which contains the list on

which the message was placed, as its argument

-- import number of the importance function for AFO - will be called

whenever a message is delivered to a port. It is called
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whenever a new message is delivered to a port with a pointer

to af struct structure for the recipient AFO and the message

activation level as its arguments. If import is NULL then the

message activation level of the arriving message is multiplied

by the global importance of the recipient AFO and added to the

current importance of the AFO

-- trans is the address of the transfer function for AFO which is called with

the address of the af struct for the AFO

-- globimp is the global importance of AFO

-- stacksz is the stack size to be allocated for AFO. If zero then no stack is

-- to be allocated - this feature is used by the framework to set

-- up its own af struct while using its existing stack

-- stk ad is the address of the stack space allocated in the higher level routine

-- save ad is the address of the save area that is allocated for the machine

state.

Creates the afo under frame fr ptr and also creates the std port for the afo.

Also creates the stack for the afo.

procedure port_cr(afonum : integer;name : string)[eturn integer;

-- afonum = afo id

-- name is the name of the port in the form "afo/port"

Creates an input port on the AFO and places the port name in the form

afo/port into the framework port table. Returns the id into the

port table. This is usually called by the main program during the

creation of the AFOs.

function port_sur(remote, frame, local:string) return integer;

-- not fully debugged yet so not implemented.

-- remote is the name of remote port in form afo/port

-- frame is the name of remote framework

-- local is the name of local port in form afo/port

Creates an entry in the port table indicating that all messages

destined for the remote port are to be sent to the local port.

If entries for either the local or remote port are not in the port

table they are entered in this table. This routine returns the id of

the remote port. This routine is usually called by main() during AFO

initialization.

prooedure af run;

-- is called to start the process of running the AFOs. It looks

-- to see which AFO has the highest importance and runs that AFO */

-- fptr is the pointer returned from framinit

4.9 Framework Systems Procedures

function af deliver(msg:msg struct)return integer;

-- delivers messages and causes a task swap if recipient AFO

-- is more important than the executing AFO if flag is set

-- msg is the message

tsk init(afo : access;trans : address; stack : integer)

-- initializes AFO task state - calls assembly

-- language routine af swinit{)

-- afo is the pointer to AFO's af struct

-- trans is the pointer to transfer function

-- stack is the stack size desired
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af swap(), af_swinit(), and af swsize() are assembly routines which have to be

recoded for each new machine.

procedure af_swap(old, new:address);

-- saves register state of current process and starts

-- execution of new process

-- old is the area to save state of current process

-- new is the location of state of new process

procedure af swinit(savarea, pc, stackptr:address);

-- initializes save area for AFO

-- savarea is the address of the save area for register state

-- pc is the address of the transfer function

-- stackptr is the address of the bottom of AFO's stack

function af swsize return integer;

-- returns amount of space needed for save area

procedure af collect;

--is a routine which is called every time a call is made to the

-- framework from an AFO and within the afo execution loops. It is

-- usually NULL but is used in some installations to cause the

-- collection of messages from the operating system and their

-- delivery. Notyet implemented

function fr_ptr return access;

-- get pointer to frame structure

Returns NIL if frame structure not yet created.

procedure all_off;

-- assembly language routine to turn interrupts off. Not yet implemented

procedure afi_on;

-- assembly language routine to turn interrupts on. Not yet implemented,

4.10 List Management Calls

4.10.1 Introduction

The List Management System is a set of subroutines which provide list functions. They are specified

here in terms of the Ada language. The system is designed for simplicity and fast execution.

4.102 The Structure

Essentially, the structure consists of a header node pointing to a doubly linked list of nodes which con-

tain user data objects as well as other information. Each list of nodes can contain multiple types of user data
objects. Below is an illustration of the LMS structure.

Header Node ==> Node0 <==> Nodel <==> Node2 ...
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4.10.3 Using Access/Task Types as Data Objects

If an access/task type is passed as a parameter to an LMS function then the contents of the access/task

type and not the contents of what it is pointing to, will be stored on the list. To store what is pointed to by an
access type, use the ptr.all format where pu"is the access type.

4.10.4 LMS Routines

The routines described here are only those available to the user. Please note that the type headtype is a
pointer to the header node.

icreat : headtype

This function creates a header node that points to the list of nodes that contain the data objects. This

header must be created in order to perform any list manipulations. So this function returns a pointer that will
eventually point to the list of nodes that contain the data objects.

lwrite(header, n, addr, size) header : headtype;addr : address;n, size : integer

This procedure allocates space for the user-defined object and stores it in node n of the list pointed to by
the header. By using n as 0, the insertion of the object is made at the beginning of the list ( this can also be

done by using AT_START ). To insert at the end of the list pointed to by the header, set n to -2 ot to the length

of the list (or you can use ATEND). For example, if there are 5 nodes in the list then setting n to 2 causes
insertion of a node with the object between the second and third nodes ( the nodes are numbered from zero and

so the length of a non-empty list is one greater than the number of the last node). So, in this example, the inser-

tion will be made just before node number 2 (the third node). Note that the address (addr) passed is the address

of the object and the size passed is the size of the object. The size can be easily passed by using the size

attribute but the address of the object cannot be passed by using the address attribute in standard Ada. Conse-

quently, an address variable must be set equal to the object'address and then that variable can be passed. See
the example at the end of this manual.

iread(header,n, addr, size) (same parameters as lwrite)

This procedure returns the object stored in the nth node of the list pointed to by the header. Here, the

exact node number must be used (i.e between 0 and the length - 1 of the list). For example, ff thje header con-

tained 5 nodes (numbered 0 to 4) then only the node numbers 0 - 4 could be used; otherwise an exception

would be raised (see LMS Errors). The address (addr) of the object to be filled is passed in a variable form (see
lwrite), and the size of the same object is put in the attribute format (i.e 'size).

irewrite(header, n, addr,size) (same parameters as lwrite)

This procedure replaces the nth node of the list pointed to by the header with the new node whose

address is addr. Note that both the concerned nodes must have the same size. This is alterable - see source
code.

igetaddr(header, n) header : headtype; n : integer;

This function returns the address of the DATA in the nth node in the list header. This is useful for access-
ing the data itself and not just a copy of it.

llength(header) : integer header : headtype

This integer function returns the number of nodes in the list pointed to by the header. For example, if the
header pointed to a list with the nodes numbered 0 to 6 then llength would return 7.

Idel(header, n) header : headtype, n : integer

This procedure deletes the nth node from the list pointed to by the header. Again, only the node
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numbers(numberedfrom0tollength- 1)canbeusedotherwiseerrorswillberaised.

lempty(header) header : headtype

This procedure removes every node from the list pointed to by the header. As a result, all the data
objects are freed and henceforth inaccessible.

Ikill(header) header : headtype

This procedure removes every node pointed to by the header AND removes header too. So, this list
then becomes inaccessible and header = null (header is de-allocated).

icopy(headl,nl,head2,n2) headl,head2 : headtype, nl,n2:integer

This procedure copies the nlth node of the list pointed to by headl to the n2th node in the list pointed

to by head2. Again, the correct node numbers must be used. Note that an insertion into the list headl is made
and no deletions occur.

leq(headl,nl,head2,n2) (same parameters as Icopy)

This boolean function compares the contents of the data object contained in the nlth node of the list

pointed to by headl with the contents of the data object stored in the n2th node which, itself, is contained in the

list pointed to by head2. If the two data objects are identical in every respect then the value true is returned;
otherwise, false is returned.

4.10.5 Setting Vital Global Constants in LMS

There are two constants that can be set in the LMS source code : MAX_SIZE and DEF_SIZE.

MAXSIZE is the maximum size (in BYTES) of the largest data object that the user will be using. At present it

is set to lKb (1024 Bytes). To change it, just enter the source code and modify its value in the beginning of the

package specifications. The other constant, DEF SIZE, is the default size ( in bytes )of the data object stored

on the list nodes. At present, it is set at 100 bytes and can be changed in the same way as MAX_SIZE. Note

that DEF_Sr-ZE should ALWAYS be less than or equal to MAX_SIZE.

4.10.6 LMS-Defined Errors

Apart from the standard Ada error exceptions (such as STORAGE_ERROR), there are five others that
are generated by LMS:

ERROR1 : List node index out of bounds.

Occurs when a non-existent node number is accessed.

ERROR2 : Deleting from a null list.

Occurs when a node is deleted from an empty list.

ERROR3 :

ERROR4 :

ERROR5:

Reference count overflow.

Occurs when the reference count of a node becomes too

large and causes an arithmetic overflow.

Comparison of lists with different lengths.

Occurs when a comparison is made between two lists of

different lengths.

comparison or assignment of objects

Occurs when a comparison/assignment

data objects of different sizes.

with different sizes

is made between two

Note that LMS does relatively little consistency checking.
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4.10.7 Purpose of LMS

LMS (Ver 1.0) was a generic package and therefore required multiple instantiations which, in cases with
several hundreds of data objects, can become very tiresome. Another side effect of this is the almost exponen-
tial increase in compilation time due to the multiple instantiations. Consequently, LMS (Vet 3.0) was created
by popular demand. Version 3.0 requires only one instantiation because it is a package and also takes MUCH
less compilation time but is limited by the two constants described earlier.

4.10.8 Example Program

The following program illustrates the use of LMS by computing a few numbers in the Fibonacci
sequence. As a background, the Fibonacci sequence is defined with the following recurrence relation:

Fib(n) - Fib(n-l) + Fib(n-2) where Fib(0) - Fib(l) - i

So, the next three Fibonacci numbers would be 2, 3 and 5.

Here is the sample program that computes a few Fibonacci numbers and their corresponding squares:

with ims, system, text_io; use text_io, system, lms;

-- Fibonacci example

procedure ex is

type node is record

number : integer;

numsqr : integer;

end record;

package pos_io is new integer_io integer); use pos_io;

ndmnd2 : node;

ad : address := nd'address;

fib : headtype

vall, val2, i, newval, newsqr : integer;

begin

fib := icreat;

vall := i;

val2 :s i;

nd.number := vall;

nd.numsqr := val2;

lwrite(fib, AT_START, ad, nd'size)

lwrite(fib, AT_END,ad, nd'size)

for i in 2..9

loop

newval := vall + val2;

newsqr := newval * newval;

nd.number := newval;

nd.numsqr := newsqr;

lwrite(fib, i,ad, nd'size);

vall := val2;

val2 := newval;

end loop;

for i in 0..9

loop

iread(fib, 0,ad2, nd2'size);

put(nd2.number);

put(nd2.numsqr);

put_line(" <--");

idel(fib, 0);

end loop;
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end ex;

Here is the output of the Fibonacci example:

1 1 <--

1 1 <--

2 4 <--

3 9 <--

5 25 <--

8 64 <--

13 169 <--

21 441 <--

34 1156 <--

55 3025 <--

LMS provides two new structures to the user: dynamically allocated "list elements" and indefinite-sized

"lists". Lists can contain only list elements, and list elements exist only as parts of lists. When a list element is

no longer contained on any list it will be deallocated. A list element may be a member of several lists simulta-
neously.

Variables referring to lists should be of type "headtype", where headtype is defined in the package speci-
fications of LMS.ADA. The headtype refers to the type of header node associated with the list. For a more

detailed discussion, please see the LMS manual.

4.11 Procedures for Handling Generalized Objects

Generalized Objects (GOs) provide a uniform and homogeneous representation of complex data struc-

tures for the specific purpose of transmitting objects between AFOs. These have not yet been implemented in
AFA.

4.12 Structures

This section of the manual describes the structure of objects such as messages and lists used in AFA.

4.12.1 Lists

A list is a pointer to a data structure which is a list header whose fields are:

name type description

.....................

size integer size in bytes of list element

length integer number of elements in list

start access pointer to first node header

endd access pointer to last node header

lastref integer node number last referenced

lastptr access pointer to the node header last referenced.

The list is actually a list of node headers which point to the data objects themselves. These node headers
contain the forward and backward chaining pointers for a list. The structure of the node header is:

name type description

.....................

link access pointer to next node header in list - NULL if last entry

plink access pointer to previous header in list - NULL if first entry

data datatype pointer to data object.

size integer size of the object data in bytes.

Lists have forward and backward pointers for rapid access to list elements. Access to a specific list ele-
ment is made from the beginning, end, or last referenced point in the list, whichever is closest.
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4.12.2 Activation Framework Objects

All the information pertaining to an AFO is contained in a structure known as an af struct. The format of
an af_struct is as follows:

name type

af name string

af idnum integer

af class integer

af_gimp integer

af_cimp integer

af_primd integer

af_portl headtype

af init integer

af prlme integer

af_impor integer

af trans address

af stack address

af save address

description

name of AFO

identifying number for AFO

used for differentiating uset from system AFOs

global importance

current importance

0 = not ready to execute; 1 - ready to execute

pointer to port list - see section 7.3

pointer to initializatlon routine

pointer to priming function routine

pointer to importance calculation routine

pointer to transfer function routine

pointer to stack

address of area in which to save last executing

register status of the AEO.

Af_structs are contained on a list which is pointed to by a pointer contained in the structure frm_slzuct,
whose format is:

name type

frm name string

frm afl headtype

pt_tbl headtype

frm cafo integer

description

name of framework

pointer to list of af structs

pointer to the port table (see section 7.5)

id of current afo

4.12.3 Ports

AFO ports are kept on a list which is pointed to by the portlist entry in the afo_struct. Each port has the
following structure:

name type

pt_name string

pt_pend headtype

pt_num integer

pt afo integer

description

name of port

pointer to list of pending messages (see section 7.4)

local port id number

Id of its afo.

4.12.4 Messages

Messages in memory (i.e. prior to serialization) are kept in the following format:

name type

msg_toid integer

msg_frid integer

msg_type integer

msg_gol headtype

msg_act integer

msg_dead time

msg_sent time

description

index of the addressee in the port table

index of the reply port in the port table

message type

pointer to a GO.

activation level of message

time at which message is to be deleted from system

time message was sent

Messages are encoded in a serial format when they are transmitted between processors as described in section

7.7.
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4.12.5 Port Table

For speed of access all ports are referenced by an ID number, rather than by name. The ID is an index
into a port table, each entry in which has the format:

name type description

.....................

ptb name string name of port

ptb ptr integer id of port

ptb_afo integer id of owning alp
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5. VALIDATION AND VERIFICATION USING MONTE CARLO SIMULATION

There are three basic parts to the validation and verification system developed for this project, a test gen-

erator, an EFG "simulator", and a test evaluator. Along with these parts a test generation metaknowledge lan-

guage was developed to drive this system. Another type of metaknowledge was identified but has not yet been

explored, this is test configuration knowledge.

5.1 Test Generation

A test generator was designed and implemented to take the metaknowledge syntax and create a given

number of test cases. This system was implemented in common LISP and is running on Gold Hill Common

LISP for a PC, and in Ibuki Common LISP on an Encore. The basic interaction with the generation system is

the creation of the metaknowledge file. This file contains the information needed in the generation of test

cases. Once this file is created the user then enters common LISP and loads the generation program. The com-

mand (start input-file num output-file) can be issued. The system takes the file input-file and reads the entire

file in. It then parses the information into an internal representation. The system then attempts to generate

num test cases. It also generates any partial and full test cases and merges these into the fist of test cases.

These cases are then written to the output-file.

The system will randomly generate test cases within the given conditional relations and in a proper order.

The strategy the system uses to generate a test is fairly simple. First pick an input name for which no input has

been generated. Randomly choose a value for this input given its ddl. Check the conditional relationships to
make sure that this value is consistent with the current inputs generated so far. If the case is compatible pick a

new name to work on, otherwise try to fix the current case to match the conditional relations. If no fix can be

found abandon this value and try again. This process continues until an entire test case has been generated.

The current system tries to make test cases using all the inputs. It also only supports two ddl types, string and
boolean.

5.1.1 Test Generation Metaknowledge Syntax

Input/Output/Intermediate Node Value Metaknowledge:

(name ddl i (x..y %) (a..b %)...l(c..d %) (e..f %)...)

name contains no spaces

ddl is description of the data using the ddl syntax described as

in the EFG syntax

i is the flag for type of node Info

I: input

O: output

none: intermnedlate

x,y,a,b,c,d,e, and f are integers, real numbers, or characters

or can be replaced by a single discrete value

% (optional) argument to specify the probability of

the particular range or discrete value

I is used to separate the different parts of the ddl

Examples:

(digits I I (0..9))

(color S I (red green blue yellow))

(temp R I (25.0..35.0 0.90))

(step I I (1..5 0.10)(6..10 0.75)(11..20 0.I0) (21..30 0.05))

(size S I (large 0.55) (medium small 0.20))

(letters C I (a..d 0.i0) (e..q 0.90))

(flag B O (True 0.70))

(on B)

(jtids FF I (0.0 0.5)(1.0 0.5) ] (0.0 0.7) (1.0 0.3))

Input Co-occurrence Metaknowledge:
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(If x then never y)

(If x then y)

Where x and y can be any combination of inputs using a name specified by

the format for individual values, any mathematical operator

(-,>,<,etc.), and any combination of these forms using boolean

operators (and, or, not). Presence of a value is denoted by not using any

mathematical operator.

Examples:

(If (color = red) then never (temp > 15.0))

(If color then never digit)

(If ((color <> red) and {temp < 15.0)) then_never (step > 5))

(If flat then never gloss)

(If gloss then never flat)

Input Ordering Metaknowledge:

(x before y)

(x after y)

(x not before y)

(x not after y)

Where x and y can be any names specified by the individual

input syntax

Examples:

(color before step)

(gloss not after flat)

(flat before color)

Conditional Relation and Test Case Metaknowledge:

{if x then y)

(if x then never y)

Where x and y can be any combination of inputs, outputs, or intermediate

value names and any logical (and, or, not) or mathematic (=, <, >, etc.)

operators applied to them. A full test case specifying all inputs

as x and the expected output values as y. A partial test case being

where only some of the inputs are specified.

Examples:

(if ((color = red) and (step = I0)) then (temp = I00))

(if ((((color = red) or (temp > I00)) and (step - i..i0)) and

not(digits = 5)) then ((flat = 5) and (not (gloss > 7))))

Definitions:

Full Test Case:

A full test case has no inputs left unspecified.

boolean conjunctions and has only inputs in the If clause.

are allowed in the Then clause.

It has no

No inputs

Partial Test Case:

A partial test case allows some inputs to be left unknown.

Only inputs are allowed in the If clause but no inputs are allowed in

the Then clause.
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Full example:

Inputs :

(a S i

(b B i)

(cS i

(high med low))

(summer spring winter fall))

Outputs:

(advance B o)

(retreat B o)

Input Co-occurrence:

(if (a = high) then

(if (b = true) then

Input Ordering:

(a before b)

(c not before a)

((c = spring) or (c = fall)))

((a - med) or (a - low)))

Full Test Cases:

(((a = high) and (b = false))

(retreat = true))

(((a : med) and (b = true)

(advance = true))

(if

(if

(c = summer)

Partial Test Cases:

(if ((a - low) and

and

and (c = spring)) then

(c = summer)) then

then (retreat = true))

5.1.2 Test Configuration Metaknowledge

This is a new form of metaknowledge which was uncovered in the design of the test generator. What
this knowledge specifies is exactly how to use the test generation metaknowledge. The test generation meta-

knowledge specifies what the test space looks like, but the configuration knowledge tells you how to test that
space.

This knowledge is currently restricted to the number of test cases which are to be generated. There are

many other possibilities which could be allowed. There are three broad categories of conslraint knowledge
which have been identified, types of tests, number of tests, and input timing. The types of tests to be generated
includes the description of how to use the ranges and probability distributions. These could be fully random
within the given bounds, make sure each part of the probability distribution has at least one value generated for
it, just use the average values, etcetera. The number of tests to be run could include a user input number or a

number of test cases to obtain a certain probability of coverage. The timing knowledge has information about
how long of a delay exists between inputs, which could be an average number or a random delay.

This knowledge could be very important to testing a system. Just the knowledge about the test space is
not sufficient to "know" how to test the space accurately. It is important to find out where most of the testing

time should be spent in order to effectively test a system.

5.2 EFG Simulation

When this project started out a separate simulation module was going to be designed and built using
Simscripc After some initial work with the design of this system it was determined that this was not the best

way to go about the creation of an EFG simulator. There were several factors which led to the abandoning of
Simscript. The first reason was the complexity involved with the data structures needed to simulate an EFG.
What is needed to capture the richness of the EFG syntax is a list data structure. This data structure would be

difficult to duplicate using Simscript. The second factor involved was the fact that AFA is very close to the
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system which would be needed as a simulator. Using AFA saved on time since a majority of the environment

would already be designed. Another advantage to using AFA is that the testscvould be performed on the actual

code and not a simulation of the code. A possible future advantage would be the toting of the code in a paral-

lel environment. This would allow for the parallelism to be tested and would also increase the speed at which

tests could be conducted. All these reasons outweighed any reasons for staying with a Simscript simulation of
an EFG.

The simulation environment is currently identical to AFA. This environment will be expanded to

include many other enhancements which would keep track of the message flow. This would allow for the
examination of internal as well as external nodes and the values which are associated with these nodes. Over-

all this approach has the benefit of being flexible enough to handle many more cases without the need to dupli-

cate the code being written for AFA in Simscript.

5.3 Test Evaluator

A test evaluator was designed and implemented to take a single test case and the output generated and

determine if the results were within the rules specified by the metaknowledge syntax. This system was imple-

mented in common LISP and is running in Ibuki Common LISP on an Encore. To use this system first LISP

must be entered and the evaluator must be loaded into memory. The command (begin input-file output-file)

can be issued. The system takes the file input-file as the input of the test case and output file as the the remits

of running the test case. A file called SYS.OUT is used to pass information between the generator and the

evaluator. The evaluator currently runs two different checks on the test case. The first is a ddl check on the

results of the run. This will return any inconsistencies in the data. The second is to check any rules which are

applicable to make sure that the values are within specifications.

5.4 Sample Run

This is a script file which shows the test generator and test evaluator in operation. This file was created

on an Encore which was running Ibuki Common LISP.

First a file (NEW.DAT) with the testing metaknowledge is entered. Then, file OUT2.DAT is generated

which contains a set of test case inputs. Finally, the test evaluation is carried out by comparing the results of

the runs on the generated test cases with the testing metaknowledge and any discrepancies are reported.

Testing Metaknowledge

Script started on Fri Jan 5 11:33:23 1990

Dave>> cat NEW.DAT

(eq_mode_health b i)

(pilot not busy b i)

(health b i)

(Jtids b i)

(get previous_waypoint b)

(get_unaided_sol b)

(get ecm env b)

(get lead map error b)

(get_alpha_check b)

(get wm map_error b)

(get eo radar_des b)

(q s o ((I 2 3 4 5 6 7 8) (I 2 3 4 5 6) (I 2 3 4) ()))

(eq_mode_health before pilot_not_busy)

(eq mode_health before health)

(pilot_not_busy before 9tids)

(health before jtlds)

(if ((eq_mode_health = true) and (pilot_not busy = true) and

(health = true) and (jtids = true))

then (q = (i 2 3 4 5 6 7 8)) )

(if ((eq_mode_health = true) and (pilot_not_busy = true) and

(health = false) and (jtids = false))
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then (q = (i 2 3 4 5 6)) )

(if ((eg_mode_health = true) and (pilot_not_busy = true) and

(health = false) and (Jtids = true))

then (q- (i 2 3 4 5 6)) )

(if ((eg_mode_health- true) and (pilot_not_busy = true) and

(health = true) and (jtids = false))

then (q = (I 2 3 4 5 6)) )

(if ((eq_mode_health- true) and (pilot_not_busy = false))

then (q- (I 2 3 4)) )

(if (eq_mode_health - false)

then (q- ()))

Test Case Generation

Dave>> ibcl

IBUKI Common Lisp release 01/01 October 15, 1987

This software is provided by IBUKI pursuant to a written license agreement

and may be used, copied, transmitted and stored only in accordance with the

terms of such license.

;; Copyright (c) 1987, 1986 IBUKI All rights reserved.

;; Copyright (c) 1986, 1985, 1984 T. Yuasa and M. Hagiya All rights reserved.

For more information: (describe 'copyright) or (describe 'acknowledgements)

Loading init.lsp

Warning:

ED is being redefined.

Loading parse.lsp

Finished loading parse.lsp

Loading before.lsp

Finished loading before.lsp

Loading gen.lsp

Finished loading gen.lsp

Loading evl.lsp

Finished loading evl.lsp

Finished loading init.lsp

>(start "NEW.DAT" 12 "OUT2.DAT")

T

>(bye)

Bye.

Dave>> cat OUT2.DAT

#BegTest

EQ_MODEHEALTH FALSE

HEALTH FALSE

PILOT NOT BUSY FALSE

JTIDS FALSE

#BegTest

EQ MODE_HEALTH TRUE

HEALTH TRUE

PILOT NOT BUSY TRUE

JTIDS TRUE

|BegTest

EQ_MODE_HEALTH TRUE

HEALTH FALSE

PILOT NOT BUSY FALSE

JTIDS FALSE

#BegTest
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EQ MODE_HEALTH TRUE

HEALTH TRUE

PILOT NOT BUSY FALSE

JTIDS TRUE

#BegTest

EQ MODE_HEALTH FALSE

HEALTH TRUE

PILOT NOT BUSY FALSE

JTIDS TRUE

#BegTest

EQ_MODE_HEALTH FALSE

HEALTH TRUE

PILOT NOT BUSY FALSE

JTIDS FALSE

#BegTest

EQ MODE HEALTH TRUE

HEALTH TRUE

PILOT NOT BUSY FALSE

JTIDS FALSE

#BegTest

EQ MODE_HEALTH FALSE

HEALTH TRUE

PILOT NOT BUSY TRUE

JTIDS TRUE

#BegTest

EQ_MODE HEALTH FALSE

HEALTH TRUE

PILOT NOT BUSY TRUE

JTIDS FALSE

#BegTest

EQ_MODE_HEALTH TRUE

HEALTH FALSE

PILOT NOT BUSY TRUE

JTIDS FALSE

#BegTest

EQ_MODE_HEALTH TRUE

HEALTH TRUE

PILOT NOT BUSY TRUE

JTIDS FALSE

#BegTest

EQ MODE_HEALTH TRUE

HEALTH FALSE

PILOT NOT BUSY TRUE

JTIDS TRUE

###

Test Case Evaluation

Dave>> ibcl

IBUKI Common Lisp release 01/01 October 15, 1987

This software is provided by IBUKI pursuant to a written license agreement

and may be used, copied, transmitted and stored only in accordance with the

terms of such license.

;; Copyright (c) 1987, 1986 IBUKI All rights reserved.

;; Copyright (c) 1986, 1985, 1984 T. Yuasa and M. Haglya All rights reserved.

For more information: (describe 'copyright) or (describe 'acknowledgments)

Loading init.lsp

Warning:



-86-

ED is being redefined.

Loading parse.lsp

Finished loading parse.lsp

Loading before.lsp

Finished loading before.lsp

Loading gen.lsp

Finished loading gen.lsp

Loading evl.lsp

Finished loading evl.lsp

Finished loading init.lsp

>(begin tl 02)

the test case to evaluate

((EQ_MODE_HEALTH TRUE) (HEALTH FALSE)

(JTIDS FALSE))

the results of the test case

((O (I 2 3 4 5 6)))

T

(PILOT_NOT_BUSY TRUE)

>(begin tl 03)

the test case to evaluate

((EQ_MODE_HEALTH TRUE) (HEALTH FALSE) (PILOT NOT BUSY TRUE)

(JTIDS FALSE))

the results of the test case

((Q (1 2 3 4)))

The results of this test case do not conform to the rules

T

>(begin tl 05)

the test case to evaluate

((EQ_MODE_HEALTH TRUE) (HEALTH FALSE) (PILOT NOT BUSY TRUE)

(JTIDS FALSE))

the results of the test case

({Q XYZ) (RETREAT SPRING) (GUMBO FALSE) (ADVANCE TRUE))

Q has a value inconsistent with its definition

No definition for RETREAT

No definition for GUMBO

No definition for ADVANCE

The results of this test case do not conform to the rules

T

>(begin t2 04)

the test case to evaluate

({EQ_MODE_HEALTH FALSE) (HEALTH FALSE)

(JTIDS FALSE))

the results of the test case

((Q NIL))

T

(PILOT NOT BUSY TRUE)

>(begin t3 02)

the test case to evaluate

((EQ_MODE HEALTH TRUE) (HEALTH TRUE)

(JTIDS FALSE))

the results of the test case

((Q (i 2 3 4 5 6)))

T

(PILOT_NOT_BUSY TRUE)

>(begin t4 oi)

the test case to evaluate

((EQ_MODE_HEALTH TRUE) (HEALTH TRUE)

(JTIDS TRUE))

the results of the test case

((Q (1 2 3 4 5 6 7 8)))

T

(PILOT_NOT_BUSY TRUE)
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>(begin t5 03)

the test case to evaluate

((EQ_MODE_HEALTH TRUE} (HEALTH TRUE)

(JTIDS TRUE))

the results of the test came

((Q {I 2 3 4)))

T

>(bye)

Bye.

Dave>> exit

Dave>>

script done on Frl Jan 5 ii:39:04 1990

(PILOT NOT BUSY FALSE)
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6. VALIDATION AND VERIFICATION OF EXPERT SYSTEMS USING PETRI NETS

This investigation centers on determining how the body of theory which currently exists for the analysis
of Petri Nets can be applied to the verification and validation of expert systems. Previous research has shown
that it is possible to express expert systems applications using a highly parallel representation called an evi-

dence flow graph. Further, it has been shown that this evidence flow graph representation can be expressed as
an equivalent Petri Net. Since techniques exist to analytically quantify the behavior of Petri Nets, it seems

obvious that these techniques should be applicable to analyzing the behavior of evidence flow graphs, and thus,
should be applicable to analyzing the behavior of expert systems.

In order to explore this idea, the methodology shown in figure 6.1 was adopted. First, an expert system
was selected for analysis and was translated into its evidence flow graph representation. Second, the evidence
flow graph nodes and arcs were translated into places and transitions in such a manner that a decision-free Petri
Net was formed. Next, this Petri Net was subjected to analysis in order to determine if the resultant network
exhibited any characteristics which would be undesirable. In particular, the characteristics of concern were:

Boundedness. If a system is not bounded, a condition may exist in which demands for system resources
(memory, queues, I/O) become unlimited.

Reachability. If a system contains states which are not reachable during normal processing, and thus
untestable, then system behavior may be unpredictable if one of these states is entered as a
consequence of a fault.

Safeness. Certain conditions in a system may be considered undesirable or "Unsafe" if, when the system
enters such a state, there is the possibility for catastrophic failure.

so,, tH "'ra,,,'-oH ",'a,,,',,'o.'n"','z"Expert into Flow into Petri Petri
System Graph Network Network

Figure 6.1 Methodology of Investigation

In the following sections, the details of translation and analysis are described. The next section discusses
the manner in which an evidence flow graph can be translated into a decision free Petri Net. Section three
describes the algorithm used to analyze the behavior of the resultant Petri Net. Section four presents a sum-
mary of the findings of this investigation.

6.1 Evidence Flow Graph Translation

An evidence flow graph, shown in figure 6.2, is a directed graph which is used to explicitly model the
control structure which underlies the expert system being represented. If, for example, the expert system being

represented was a production system, each node would represent a rule and each arc would represent the effect
of one rule on another.

Using an evidence flow graph representation, a node (rule) is considered enabled if the logical relation
specified by the node's preconditions is satisfied. Once enabled, an evidence flow graph node fires by consum-

ing data items presented on its input arcs, generating a result according to the algorithm associated with the
node, and passing the result along one or more output arcs to nodes which need the result as input.

While the translation between an evidence flow graph and a Petri Net may seem quite straightforward
based on the above description, there two problems which prevent a direct translation. These problems can be

categorized as the multiple output problem and the multiple input problem.

The multiple output problem is illustrated in figure 6.3. The evidence flow graph shown on the left side

of the figure is intended to operate by placing a token into both nodes 2 and 3 once a token is received and pro-
cessed by node 1. If each node is replaced directly by a u'ansition and place ofa Petri Net the intended result is
not achieved. Rather, a token arrives at the input transition causing it to deposit a token into place 1. At this
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Figure6.2ExampleofanEvidenceFlowGraph

point,place1only contains a single token and thus, it can only enable one of the two transitions on its output.
The Petri Net is forced to "decide" which place should receive the token (when, in fact, both places 2 and 3

should get one).

maps
tO

Figure 6.3 The Multiple Output Problem

The multiple output problem can be solved by simply reversing the order of the places and transitions of
the Petri Net. As shown in figure 6.4, each evidence flow graph node gets translated into a Petri Net place fol-

lowed by a transition. Since transitions can generate multiple tokens when they fire, this property can be used
to distribute tokens to an arbitrary number of output places. Thus, under this translation, the ability of an evi-

dence flow graph node to broadcast to several other nodes is preserved.

The translation proposed for solving the multiple output problem, however, is incomplete since it does

not provide a mechanism for implementing arbitrary logical preconditions on the inputs of a node. In fact, the
only precondition possible for the translation proposed in figure 6.4 is an OR precondition since any token
deposited in the input place from any source will cause it to fire. In an evidence flow graph each node may
have a precondition which is a arbitrary logical function of the input arcs of that node. Thus, the translation
from an evidence flow graph to a Petri Net must correctly preserve the AND, OR, and AND/OR relationships
which exist between the multiple inputs of an evidence flow graph node.

As was the case with the multiple output problem, the multiple input problem is also solved by adopting

an appropriate mapping of evidence flow graph constructs into Petri Net components. In order to allow a Petri
Net model to faithfully model the manner in which an Evidence Flow Graph handles its inputs, a more com-
plex Petri Net node model must be used. This more complicated model consists of two elements: a conjunct
element and an action element. Figure 6.5 shows how these elements are used to create a faithful Petri Net
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maps
to

Figure 6.4 Solving the Multiple Output Problem

Model on an evidence flow graph. Preconditions of a rule, as can be seen in the figure, are interpreted as being
either "OR" conditions (no interconnecting semicircle) or "AND" conditions (interconnected by a semicircle).

Figure 6.5 Representation of OR, and AND/OR Conjuncts

6.2 Analysis Algorithm

Once an evidence flow graph has been translated into its Petri Net representation, analysis of the trans-
lated system may begin. Currently, first-order analysis is done by performing a reachability analysis on the
Petri Net under investigation. This analysis can be used to determine boundedness by determining if there are

any Petri Net nodes which have token counts which continually grow, it can be used to determine teachability
by identifying nodes which axe never activated, and it can locate states which have a priori been identified as
unsafe.

The basic algorithm used for performing reachability analysis is Dugan's algorithm which is given in fig-
ure 6.6• Given some initial Pelri Net and marking, the algorithm inspects each transition. If a selected transi-

tion is enabled, it is fired and a potentially new marking is created. This potentially new marking is compared



-91-

to all previously encountered markings and, if it is unique, it is added to the teachability tree of the Petri Net.

The process continues until all possible markings which are reachable from the initial marking have been pro-
cessed.

Step 1:

Step 2:

Step 3:

Step 4:

Get marking c for analysis

Forj = 1...t do

if transition j is enabled by marking c

then generate new marking M_np(k)
and for each k do

if Mt_p(k) is not already in the tree,
then m = m + 1

M(m) = Mt_p(k)
C=C+I

Figure 6.6 Dugan's Algorithm

Figure 6.7 illustrates a situation in which translation of an evidence flow graph yields an unbounded Petri

Net. In this case, the first place contains a token resulting in its output transition being enabled. When this

transition fires, it will place tokens both in the first and second place thus enabling both transitions to fire.

After firing, the first place will now contain two tokens and the second place will contain one. Thus, both tran-

sitions continue to be enabled and will continue to fire, each time adding one token to the first place. The result

is that the number of tokens resident in the first place will grow without bound indicating a potential problem

area.

Figure 6.7 Unbounded Network

Figure 6.8 shows a Petri Net and marking which results in unreachable states. In this figure, only places

2 and 3 contain tokens and thus, only transition 2 is enabled. Once transition 2 fires, it a token is put into place

5 which, in turn, enables transition 4. When transition 4 fires, a token is put into place 6 and Petri Net execu-

tion is complete. Since there is no mechanism in this Petri Net to put tokens into places 1 or 4, transitions 1

and 3 will never be able to fire. Thus, the nodes and transitions which lie on the path from pl to p6 are all

unreachable.

6.3 Summary of Results

The techniques described in the previous sections have defined how an evidence flow graph can be trans-
lated into a Petri Net and how a first-order analysis of the resultant Petri Net may be performed. This first-

order analysis is based on the extraction of the reachability tree from a Petri Net with a given marking. Based

on this reachability tree, it can be determined if there are states which exist in the Petri Net but are unreachable

from a given marking, whether a given marking results in one or more places receiving an unbounded number
of tokens, or if state which has been determined a priori to be unsafe can evolve from a marking.

While this type of first-order analysis can provide useful insight into the behavior of a system, there are

some important limitations of the technique presented. First, the NP-complete nature of the algorithm limits

the utility of this technique to Petri Networks with relatively small numbers of places and transitions. For net-
works of a few dozen nodes, a few hours of runtime on an IBM PC AT class machine are required. For larger

systems, the expected limit on network size would be a few hundred places and transitions. Since simple
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pl p4

Figure 6.8 Network with Unreachable Nodes

evidence flow graphs translate into moderately complex Petri Nets, evaluating complicated evidence flow

graphs would quickly become impractical.

A second problem with the first-order analysis presented is that the models used for transitions and
places are rather simplistic. There has been no effort taken to account for common generalizations to Petri
Networks such as stochastic transitions or non-decision free places. While these extensions are possible, they
add significant complexity to the resultant model and therefore exacerbate the computational burden of net-
work analysis.

6.4 C onclusion

The analysis performed suggests that the ability to analyze evidence flow graphs using Petri Net tech-

niques is severely limited by the computational complexity of the analysis process. While this conclusion is
justified based on the experimental results, it may be that the results were biased by the methodology more than
any inherent limitation of the idea of using Petri Nets to analyze evidence flow graphs.

The methodology presented in section 6.2 was based on the premise that the evidence flow graph had to
be translated into a lower level Petri Net representation prior to analysis. This translation was required to cast
the flow graph into a format for which analysis techniques currently exist. It is possible that with an appropri-
ate generalized Petri Net model the evidence flow graph can be analyzed direcOy, thus substantially reducing
the computational burden of the analysis. For such a model to be analyzed, however, new tools and techniques

for analyzing this new class of Petri Net would have to be developed. Such an effort may provide additional
analysis capability such as a means for detecting race conditions or for multiple processor system validation.
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7. CONVERTING CLIPS TO AN EFG

In this section we will discuss the conversion of CLIPS rule bases into Evidence Flow Graphs. The

expert system written for the MMU application does not use the full range of CLIPS constructs. In this sec-

tion, we will first discuss converting the subset of CLIPS that is found in the MMU system and then consider

the difficulties in converting unrestricted CLIPS.

7.1 Converting MMU CLIPS to an EFG

We divide the process of converting the MMU CLIPS into an EFG into two stages. This process is illus-

trated in Figure 7.1. First, the MMU CLIPS rules together with metaknowledge about 'collapsing' are used to

'decollapse' the rules. This process expands the number of conjuncts in the rules, and possibly the number of

rules itself. This de,collapsing process produces what we refer to as 'single-argument rules'. Single-argument

rules are rules that only refer to single-argument or single-valued facts. Such facts consist of a predicate-name

and a single value-field. Of course, it is possible to have an expert system in CLIPS that is originally written

using only rules which refer to single-argument facts; in this case no decollapsing is required, and the rules can

be translated into an EFG directly. In this subsection we will first discuss the principles for the translation of

'single-argument' CLIPS rules to an EFG, then the motivation for the 'single-argument rules' as an intermedi-

ate level of representation, and finally the method for decollapsing.

MMU CLIPS Rules Metaknowledge (for collapsing)

I DECOLLAPSER

, I ,
Single-argument Rules

TRANSLATOR 1

EFG

Figure 7.1 Generating an EFG from MMU Clips Rules.

There are four principles for the translation of 'single-argument' CLIPS rules into an EFG:

1) For each rule, there is a RULE NODE.

2) For each value referred to in the antecedent(Ihs) or consequent(rhs) of any rule there is a VALUE NODE.

3) There is a link FROM the value node of a value referred to in an antecedent TO that rule node.

4) There is a link FROM a rule node TO to the value node of each of the values referred to in its conse-

quent.

Below are eight rules written in terms of single-valued facts. The nodes of the EFG created by following

principles 1 and 2 above are depicted in Figure 7.2. Due to the large number of links, they have not been

included in this figure. There would be one link from each rule node to the FAILURE node and one link from
each rule node to the SUSPECT node. There would be a link to each of the rule nodes from each of the fol-

lowing input nodes: AAH, GYRO, GYRO-MOVEMENT, SIDE-A, SIDE-B, RHC-ROLL, RHC-PITCH,
RHC-YAW, THC-X, THC-Y, THC-Z. In addition, there would be a link from each of the following input

nodes, VDA-A-LI, VDA-A-R2, VDA-A-L3, VDA-A-R4, to each of the odd-numbered rule nodes, R1, R3,

R5, R7<, and from each of VDA-B-LI, VDA-B-R2, VDA-B-L3, VDA-B-R4 to each of the even-number rule
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nodes,R2,R4,R6,R8.

(.OYRO)
(GYRO-MOVEMENT)

( SIDE-A_

_SIDE-B]

RHC-ROLL)

RHC-PITCH

(RHC-YAW_)

(THC-X_

(T_c-Y)
(T.c-z)
(VDA-A-L1)

(VDA-A-R2)

( VDA-A-L3

(VDA-A-L4)

(VDA-B-L1)

(VDA-B-R2)

( VDA- B-L3 )

(VDA-B-R4)

Figure 7.2 Nodes in the Translation of the Eight Rules.
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RULE1:

(AND

(OR aah=off (AND gyro=on gyro-movement=none)

(side-a=on)

(side-b-on)

(rhc-roll=none)

(rhc-pitch=none)

(rhc-yaw=none)

(thc-×=none)

(thc-y=pos)

(thc-z=none)

(OR vda-a-r2=off vda-a-r4=off vda-a-ll=on vda-a-13=on)

)
->

(AND

(failure=cea)

(suspect=a)

RULE2:

(AND

(OR aah=off (AND gyro=on gyro-movement=none)

(side-a=on)

(side-b=on)

(rhc-roll=none)

(rhc-pitch=none)

(rhc-yaw=none)

(rhc-yaw=none)

(thc-x=none)

(thc-y=pos)

(thc-z=none)

(OR vda-b-r2=off vda-b-r4=off vda-b-ll=on vda-b-13=on)

)

->

(AND

(failure=cea)

(suspect=b)

)

RULE3:

(AND

(OR aah=off (AND gyro=on gyro-movement=none)

(side-a=on)

(side-b=on)

(rhc-roll=none)

(rhc-pitch=none)

(rhc-yaw-none)

(thc-x=none)

(thc-y=neg)

(thc-z=none)

(OR vda-a-ll=off vda-a-13=off vda-a-r2=on vda-a-r4=on)

)
->

(AND

(failure=cea)

(suspectza)

)

RULE4:

(AND

(OR aah=off (AND gyro=on gyro-movement=none)

(side-a=on)
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)
->

(AND

(side-b=on)

(rhc-roll-none)

(rhc-pitch-none)

(rhc-yaw=none)

(thc-x=none)

(thc-y=neg)

(thc-z-none)

(OR vda-b-ll=off vda-b-13=off vda-b-r2=on vda-b-r4-on)

(failure=cea)

(suspect=b)

RULES:

(AND

(OR aah=off (AND gyro=on gyro-movement=none)

(side-a=on)

(side-b=on)

(rhc-roll-pos)

(rhc-pitch=none)

(rhc-yaw=none)

(thc-x=none)

(thc-y=none)

(thc-z=none)

(OR vda-a-r2=off vda-a-13=off vda-a-ll=on vda-a-r4=on)

)
->

(AND

(failure=cea)

(suspect=a)

RULE6:

(AND

(OR aah=off (AND gyro=on gyro-movement=none)

(side-a-on)

(side-b=on)

(rhc-roll=pos)

(rhc-pitch=none)

(rhc-yaw-none)

(thc-x=none)

(thc-y=none)

(thc-z=none)

(OR vda-b-r2=on vda-b-r4=on vda-b-ll=on vda-b-13=on)

)
->

(AND

(failure=cea)

(suspectzb)

)

RULE7:

(AND

(OR aah-off (AND gyro=on gyro-movement=none)

(side-a-on)

(slde-b-on)

(rhc-roll-neg)

(rhc-pitch-none)

(rhc-yaw=none)

(thc-x=none)
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)

->

(AND

(thc-y=none)

(thc-z=none)

(OR vda-a-r2=on vda-a-r4=on vda-a-ll=on vda-a-13=on)

(failure=cea)

(suspect=a)

RULES:

(AND

(OR aah=off (AND

(side-a=on)

(side-b=on)

(rhc-roll=neg)

(rhc-pitch-none)

(rbc-yaw=none)

(thc-x=none)

(thc-y=none)

(thc-z=none)

(OR vda-b-r4=off

)
->

(AND

(failure-cea)

(suspect=b)

gyro=on gyro-movement=none)

vda-b-ll=off vda-b-r2=on vda-b-13=on)

The motivations for the intermediate level of representation are the desire for parallelism, the reduction

of the routing effort for messages, and the restriction of unnecessary potential access. In addition, the transla-

tion of this intermediate level into an EFG is a very straightforward process, as indicated by the principles
described above.

One of the primary thrusts of our work is the parallelization of processing. We want to use multiple pro-

cessors to speed up reasoning. The actual applications delivery architectures and numbers of processors are

currently unknown, but we have would like to have the potential of maximizing parallelism. Therefore we

would like initially to create an EFG with the FINEST GRAIN that is possible. We will then RECLUSTER,

when that is desirable or required, based on architecture of system, i.e. numbers and characteristics of proces-

sors and pathways. It is also possible to do some reclustering based on a kind of data access metaknowledge
that will be discussed below.

Creating an EFG with the finest grain possible applies not only to the rule nodes or decision processes,

but also to the value nodes. In other words, each value should be located in a separate node. With respect to

values, using the largest grain would correspond to a single central memory. Every access or update of any

value would have to be done by communication with this central memory. When a value was changed in this

central memory, messages would have to be sent to those nodes which need to access that value. This could

involve a substantial routing effort. If, on the other hand, a node only held a single value, it would be con-

nected with outgoing links to all the rule nodes which need that value. Every time the value would be changed

by a message sent to that value node, the same message would go out on each outgoing link from that node. In

some sense, the value nodes serve as 'routers' for values. In general, the greater the number of values which

reside in a node, the greater the computational routing effort will be. Reslricting the number of values in a

node to one, also limits potential access to that value to those nodes that need to know that value. If on the

hand, a node held three values, it would need to be connected with an outgoing link to all the nodes which

needed any of those values; a node might then potentially get access to one of the two values it did not need to
know.

On the following pages are shown the eight CLIPS rules from which the eight single-argument rules

above were generated by decollapsing. Although the number of rules has remained the same, the number of

conjuncts has increased.

ORIGINAL PAGE IS

OF .POOR (_R.IALITY
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;;;;;;;;;;;;;;;;;;;;;;;;

;pos Z,

(defru!e cea-a-tes=-inpu=-posy-null-nul!-7

(or (aan off) (and (gyro on)(gyro movement none none)))

(side a on)

(side b on)

(rhc roll no_e pitch none yaw none)

(the x node Z pos z none)

(or
(vda a r2 off)

(vda a r4 off)

(vda a ?n&-r2&-r4 on)

/

->

(assert (failure tea))

(assert (suspect a))

_priDtout crlf "failure -during translational command ")

(printout "in the posy direction" crlf)

(defrule cea-b-test-input-posy-null-null-7

(or (aah off) (and (gyro on)(gyro movement none none)))

(side a on)

(side b on)

(rhc roll node pitch none yaw none)

(the x none 7 pos z none)

(or

(vda b r2 off)

(vda b r4 off)

(vda b ?n&-r2&-r4 on)

)
->

)

;neg 7

(assert (failure oea))

(assert (suspect b))

(printout cr!f "failure -during translational command ")

(printout "in the posy direction" crlf)

(defrule cea-a-test-input-neg-sull-null-8

(or (aah off) (and (gyro on)(gyro movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none Y neg z none)

(or

(vda a ii off)

(vda a 13 off)

(vda a ?n&-!l&-13 on)

)
->

(assert (failure tea))

(assert (suspect a))

(printout crlf "failure -during translational command ")
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(_rintout "in the neg Y direotion" crif)

<defruie cea-b-_est-input-neg-nuil-nul!-8

(or <nan off) (and <gyro on)(gyro =ovement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yaw none)

(thc x none Y neg z none)

(or

(vda b iI off)

(vda b 13 off)

(vda b ?n&-li&-13 on)

)

.)

=>

(assert (failure oea))

(assert (suspect b))

(printout orlf "failure -during translational command ")

(printout "in the neg 7 direction" crlf)

;pos roll

(defrule cea-a-test-input-null-pos-null-9

(or (aah off) (and (gyro on)(gyro movement none none)))

(side a on)

(side b on)

(rhc roll pos pitch none yaw none)

(thc x none 7 none z none)
(or

(vda a r2 off)

(vda a !3 off)

<vda a ?n&-r2&-13 on)

)
->

(assert (failure cea))

(assert (suspect a))

(printout orlf "failure -during rotational command ")

(printout "in the pos roll direction" or!f)

(defrule cea-b-test-input-null-pos-null-9

(or (aah off) (and (gyro o=)(gyro movement none =one)))

(side a on)

(side 5 on)

(rhc roll pos pitch none yaw none)

(thc x none 7 none z none)

(vda b ?m on)

->

(assert (failure tea))

(assert (suspect b))

(printout crlf "failure -during rotational command ")

(printout "in the pos roll direction" orlf)
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;neg rol!

(defrule cea-a-ces:-/zpU:lnU!!-neg-nuil-!O

(o= (ann off) (and (gzro on)(gyro movemen_ none none)))

(side a on)

(si_e b on)

(rhc roll neg pitch none yaw none)

(thc x none y none z none)

(vda a ?m on)

->

(assert (failure tea))

(assert (suspect a))

(printout crlf "failure -during rotational command ")

(printout "in the neg roll direction" crlf)

(defrule cea-b-test-input-null-neg-null-iO

(or (aah o£f) (and (gyro on)(gyro movement none none)))

(side a on)

(side b on)

(rhc roll nes pitch none yaw none)

(the x none 7 none z =one)

(or

(vda b r_ off)

(vda b ii off)

(vda b ?n&-r4&-ll on)

)
->

(assert (failure cea))

(assert (suspect b))

(printout cr!f "failure -during rotational command ")

(printout "in the neg roll direction" crlf)

)

::::::::::::::::::::::::::

;logic for z, roll, pitch

::::::::::::::::::::::::::

;pos Z,

(defrule cea-a-test-input-posz-null-null-ll

(or (aah off) (and (gyro on)(gyro movement none noue)))

(side a on)

(side b On)

(rhc roll none pitch none yaw none)

(the x none y =one z pos)

(or

(vda a dl off)

(vda a d2 off)

(vda a ?n&-di&-d2 on)

)
->

(assert (failure cea))

(assert (suspect a))
(printout crlf "failure -during translational command ")

(printout "in the pos z direction" crlf)
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7.3.

We will now compare the two versions of the first rule. These two versions are shown below in figure

(defrule cea-a-test-input-posy-null-null-7

(or (aah off) (and (gyro on) (gyro movement none none)))

(side a on)

(side b on)

(rhc roll none pitch none yam none)

(thc x none y pos z none)

(thc x none y pos z node)

(or

(vda a r2 off)

(vda a r4 off)

(vda a ?n&-r2&-r4 on)

)
=>

(assert (failure cea))

(assert (suspect a))

(printout crlf "failure -during translational command ")

(printout "in the posy direction" crlf)

RI:

(AND

)
->

(AND

(OR aah-off (AND gyro=on gyro-movement=none)

(side-amon)

(side-b=on)

(rhc-roll=none)

(rhc-pitch=none)

(rhc-yaw=none)

(thc-x=none}

(thc-y=pos)

(thc-z=none)

(OR vda-a-r2=off vda-a-r4=off vda-a-ll=on vda-a-13zon)

(failure=cea)

(suspect=a)

Figure 7.3 Collapsed and Decollapsed Versions of a CLIPS rule.

Initially let us consider the second and third conjuncts. In the original rules these were (side a on) and

(side b on), while in the version with single-argument rules these are (side-a on) and (side-b on). The original

conjuncts referred to multi-valued facts, where the field SIDE remained the same but the values of each of the

other fields could vary (A/B and ON/OFF). If we had a single SIDE value node, every access or update of

either SIDE A or SIDE B would have to be done by communication with this node. When either value is

changed, messages would have to be sent to just those nodes which need to access that value. This would

involve computational routing effort. Having a single SIDE value node, instead of one each for SIDE-A and

SIDE-B, could also limit potential parallelism.

The same issues are addressed in the change of ( vda a r2 off ) to ( vda-a-r -2=off ). Only those nodes

which need to access or update VDA-A-R2 would be connected to the node holding its value. On the other

hand, if we had a single VDA node, any node that updated any VDA- would have to send messages to

this single node, and any node that accessed any VDA- would need to have a communication connection

from it.

Next consider the change of (rhc roll none pitch none yaw none) to the three conjuncts, (rhc-roll=none)

(rhc-pitch=none) (rhc-yaw=none). Facts represented in the original manner could be thought of as RHC
records with three fields, ROLL, PITCH, and YAW, each of which could have the values POS, NEG, and
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NONE.Justasin thecasesabove,if wehada singleRHCvaluenode,wewouldhavetocomputationally
routemessagestothenodesthatneedthevaluesof theindividualfieldsROLL,PITCHandYAW.

It shouldbenotedthatin theMMUexpertsystem,anyrulewhichreferredtoanyonethethesevalues,
sayROLL,alsoreferredtotheothertwovalues,PITCHandYAW.Ofcourse,it neednotalwaysbethecase
thatwhatwehavereferredtoasamulti-valuedfactcorrespondstoaconceptualrecord.Whenit is thecase,
thismetaknowledgeaboutcooccurrenceofreferencestodataitemscouldbeusedtoreclustertheEFGcreated
fromthesingle-argumentrules.

It is importanttopointoutthatit takescertainknowledgetointerpretthesemanticrelationshipsbetween
thefieldsof thefactscorrespondingtotheconjunctsdiscussedabove,(sideaon),(vdaar2off),and(theroll
nonepitchnoneyawnone).Syntactically,thesejustconsistof 3,4,and7 fields,respectively.All the recta-

knowledge that we used to make these interpretations, and thus change the rules into single argument ones, was

surmised from either our own domain knowledge or from our analysis of the MMU rule base as a whole. For-

tunately, these were sufficient for the rules at hand, but they may not always be so. THIS METAKNOWL-

EDGE SHOULD BE EXPLICITLY STATED as a part of the documentation/specification of the rule base

itself. This metaknowledge is crucial for validation of the rule base. Since the facts referred to by these con-

juncts are all inputs to the system, this metaknowledge is closely related to the input metaknowledge discussed

in the section on generating data for test runs.

Consider now the change of the single conjunct (vda a ?n&-r2&-r4 on) to the disjunction (OR vda-a-

ll=on vda-a-13=on). This change involves decollapsing a conjunct, as opposed to the examples above, which

involve decollapsing multi-argument facts to make them single-valued. The decollapsing requires metaknowl-

edge about the collapsing or abbreviatory constructs in the representation language. The meaning of the origi-

nal conjunct is "there exists any VDA-A except -R2 or -R4 which is ON". Obviously, order to change this to

the disjunction requires the metaknowledge that the other VDA-A's, in addition to -R2 and -R4, are -L1 and

-L3. Again this metaknowledge was acquired by examining the MMU rule base, although this may not always

be sufficient. When it is not, this metaknowledge would have to come from the knowledge engineer or the

domain expert.

Another example of decollapsing a conjunct can be found in the sixth rule, where the conjunct (vda b ?m

on) is changed to the disjunction (OR vcla-b-ll=on vda-b-r2=on vda-b-13=on vda-b-r4=on). The original con-

junct means "there exists any VDA-B which is ON." Here the metaknowledge required in order to decoUapse
was that the set of VDA-B included -L1, -R2, -L3, and -R4.

7.2 Dealing with Unification

With the approach discussed thus far the MMU CLIPS rule base can be translated into an EFG, but that

rule base does not use the full range of capabilities of CLIPS. In particular, it does not require unification. For

unification, it is necessary to find a set of variable bindings which which meet some conditions. The critical

issue for translation to EFG or an any parallelization is 'where are the potential bindings to be found?' If we

have a single central memory, the potential sets of bindings can all be compared within that memory. Obvi-

ously, this restricts the possibilities for parallelism.

Instead of a single central memory, it might be possible based on a given rule base to group into value

memory nodes all those variables that would ever need to be unified. Each one of these value memory nodes

would need to be connected to all the rule nodes that updated or accessed any of its values. This is counter to

the methodological approach taken above; it would introduce the routing problem and restrict parallelism. Still

if the rule base includes rules that require unification, then this may be the best solution. An alternative

approach is having each variable in a different local node and doing unification by sending potential bindings

to the rules to check. This could easily cause an unmanageable message explosion.

The existing version of our software cannot translate a rule base requiring unification into an EFG. We

are currently investigating methods of dealing with unification for our EFG data flow paradigm. For the cur-
rent version of our software, we restrict the form of the facts to which rules can refer. Each fact would have

exactly two fields, the first a predicate the second a value that can vary. In addition, for each predicate there

can only be one single fact i.e. there can not be facts with diff_ent values.

Let us consider briefly the ramifications of including [hese restrictions. They would disallow the two
[L

facts (male john) and (male bill). Such information might instead be represented as (john-male T) or (john-sex
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male).Theconjunctivecondition,(and(heat?x)(weight?y)(?x< ?y)), would still be allowed, but (and (heat

?a ?x) (weight ?b ?y) (?x < ?y)) would not. Here the restrictions successfully rule out the second conjunctive

condition, which does require unification, as is evident from the following reformulation, (and (object ?a)

(object ?b) (heat ?a ?x) (weight ?b ?y) (?x < ?y)). This reformulation is ruled out on tbe basis of each of the

restrictions suggested above: the first two conjuncts include the same predicate with different values and the

second two conjuncts contain three fields. A rule with the two conjuncts (person ?x) (age ?x ?y) would also be
ruled out.

It should be noted that the first restriction can be relaxed while still allowing unification to be excluded.

In particular, it would be possible to have facts that correspond to conceptual records. For example, one might

have a 'record-type' fact (rhc roll rval pitch pval yaw yval), as was alluded to above in the discussion on decol-

lapsing and reclustedng. Similarly, while (married mary john) would be ruled out, this information might be

represented not only as (john-wife/spouse mary) (mary-husband/spouse john), but also with the relaxation as

(marriage wife mary husband john).

Finally, we reiterate that if a problem cannot be solved conveniently without unification, adhering to

these restrictions, then we can create an EFG which has, in effect, a single central memory or multiple grouped

value memory nodes. As was emphasized above, this would reduce possible parallelization and would add to

computational routing effort.
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8. APPLYING EFG METHODS TO THE MMU EXPERT SYSTEM

8.1 Introduction

This chapter discusses progress made relative to the Validation and Verification Experiment issued by

Sally Johnson of NASA Langley in the Spring of 1989. The experiment called for a number of research teams

to evaluate how applicable their techniques would be to a selected test case and to demonstrate, as far as possi-

ble, their techniques on this test case. The test case in question is an expert system for diagnosing problems

with a Manned Maneuvering Unit (MMU) for extra vehicular activities in space developed for NASA by
McDonnell Douglas[17].

The MMU test case rule set has been received and evaluated to determine how applicable our techniques

are to detecting errors within its rule set. Work is now in progress to extend our technology such that it can be

used to test the MMU rule set, subject to certain caveats which are discussed below.

This introduction summarizes the current status of the project relative to the MMU test case and is fol-

lowed by sections discussing the technical issues in greater depth.

Examination of the MMU test case revealed several issues:

1) That the MMU rule set was written for off-line diagnosis. That is, it obtains its inputs from an input file

of assertions and produces its conclusions in the form of printout statements. The WPI KRAM diagnos-

tic techniques are strongly oriented towards embedded real-time systems which obtain their data from

external sources and produce their results in the form of messages to activate other systems.

2) In the KRAM technique, inputs are injected at specified times into the system under test and then the

outputs are examined to determine whether specified performance constraints have been violated. In

order to apply KRAM to the MMU test case it will be necessary to replace the test files of assertions
with test cases in which data values are sent to the rules which require data values for the test.

3) The MMU produces its results in the form of arbitrarily formatted print statements instead of making

assertions about the truth of variables. It is not possible, in general, to automatically analyze output in the

form of print statements. In order to use the KRAM automatic test evaluator it will be necessary to

replace these printout statements with fact assertions which can be automatically verified.

4) The MMU made extensive use of multiple value facts such as (rhc roll none pitch none yaw none) when

much simpler "object-property-value" facts could have been used. This use of multiple value facts will

result in much less efficient real-time execution of the MMU and also makes testing much harder. Before

the conclusion of the present phase of the KRAM project (KRAM2-1), the KRAM software will be

capable of handling CLIPS "object-property-value" facts. Multiple value facts are planned to be imple-

mented in KRAM 2 phase 2 (KRAM2-2) as part of the implementation of unification handling. The rea-

son for this is that the primary use of multiple valued facts is in performing unification functions. In

order to test the MMU, during KRAM2-1, it will be necessary to convert the MMU multiple value facts

to simpler "object-property-value" facts. It is planned to test the MMU in its original multiple value fact

form during KRAM2-2.

5) All of the faults we have found so far in the MMU have been detected, or are capable of being detected,

by the KRAM rule to EFG/AFO translator. In trying to create a viable EFG, the translatoc is able to

determine unconnected rule inputs and outputs. It is also able to detect those inputs and outputs which

are inconsistent with the input and output value meta-knowledge obtained from the test specification

recta-knowledge. It will, in the future, be possible for the translator to detect rules which can never be

fired by examining their predicate clauses.

6) The fact that the translator has the information to detect many faults as a byproduct of trying to generate

a viable evidence flow graph was an unexpected result but a very valuable one. We have observed that

all the members of the team have gained tremendous insight into the workings (and potential problems

with) various expert systems shells by looking at how to translate their knowledge representations into

flow graph form. Now we are beginning to realize that it may be possible to automatically detect many

problems by attempting a translation from a rule based control flow representation to a data flow repre-
sentation.
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6) Therewasno performance specification meta-knowledge supplied with the MMU. We believe that this

mere-knowledge is essential to the detection of problems. If no one has specified what the system should

or shouldn't do then anything it does is supposedly OK. In order to perform any testing or fault evalua-

tion on the MMU it will be necessary for us to attempt to generate a performance specification. We plan

to use the 5 test cases supplied as part of the MMU evaluation data, together with some reverse engineer-

ing and general knowledge, to generate a test constraint language specification for the MMU rule set.

This will then be used by the test generator and evaluator to test the MMU rules.

7) There do not appear to be any numeric values, either in the test cases or in the rules, for which it would

be necessary to evaluate performance sensitivity. Thus the sensitivity evaluation feature of KRAM does

not appear to be useful in this case.

8) There does not appear to be any time or ordering constraints on the inputs or outputs. Thus the ability of

KRAM to evaluate problems related to time ordering or time changes of results would not appear to be
useful here.

There follows some detailed commentary on some of these issues:

8.2 The Acquisition of Metaknowledge

The process of applying our methods to the MMU (or any knowledge base) involves acquisition of the

necessary metaknowledge. Were this metaknowledge provided explicitly in the form of the specification lan-

guage we have designed, this acquisition would not be necessary. It is highly recommended that this meta-

knowledge be acquired or developed at the same time that the knowledge base is acquired or developed. Since

there exists no explicit metaknowledge with the MMU expert system, reverse engineering will be required to

acquire the metaknowledge. Ideally this should be accomplished by interviews with domain experts or the

original knowledge engineers.

The metaknowledge that would be needed to be acquired could be divided into two types: constraints on

values and the structure of facts. The metaknowledge about the structure of facts will be discussed in section

8.3. The remainder of this section deals with metaknowledge about constraints on values. Different kinds of

constraints on values differ in the extent to which they can be acquired by reverse engineering or whether an
expert is required. This is summarized in the following table:

Inputs, Outputs, Intermediate Values

Ranges & Distributions

Input Cooccurrence Constraints

Ordering of Input Availability

Test Cases 5

- inadequate data available

- very limited data obtainable

from reverse engineering

- need expert input

- not applicable

Input Output�Intermediate Constraints - need expert input

.........................................................................

TABLE 8.1: Acquisition of constraints on values by reverse engineering

For the MMU, some difficulties were encountered in the determination of which of the values refer-

enced in the rules are inputs, outputs, and intermediate values. The five test cases supplied with the MMU

FDIR Automation Task Final Report [1] were useful in determining the inputs and outputs. It appears that all

the cases have the same set of inputs. The outputs must be regarded as not only the changes in setting that

were made, i.e. the corrections or treatments, but also the print statements that reflect the conclusions. The pri-

mary difficulty is that diagnostic conclusions and treatments were expressed as a part of strings in print mes-

sages, not consistently as facts in the database. There is thus a need to distinguish between messages which

express conclusions from those which serve only to describe or partially trace the line of reasoning of the sys-

tem; such messages included "testing ...", "suspected ...", "turning ...", "setting ...", "recalling ...".
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Comparing the print statement expressing the expected failure for each test case with the printed output

of the test cases, indicated the kinds of print statements that needed to be examined throughout the rule base to

determine the possible diagnoses. In all cases the treatments involved setting side-A ON or OFF and/or side-B

ON or OFF. It is interesting to note the discrepancy in the descriptions of the expected failures and the print

statements. For example, for test case O the expected failure was "Cea failure - a signal from the valve drive

amp on side A was not sent to thrusters", while in the run, which presumably was thought of as correct, the

only failure reported was "cea failure on side a". We would advise that the diagnostic conclusions be

expressed as specific facts in the database. The primary reason for this suggestion is that it would allow the

treatment of final conclusions as a class of objects on which a uniform set of generic operations, i.e. a uniform

interface or protocol, could be defined. One such operation would be Print(conclusion). This would lead to

consistency in the declarative properties of each conclusion. Also changes in the implementation of any of the

generic operations would not require modification of the code of each rule which infers each conclusion. In
addition, this would allow input assertions (or facts) and inferrable assertions to share properties and operations

at a higher level of abstraction, i.e. be subclasses of the same class. A uniform treatment of these two kinds of

assertions would facilitate the operations required for test generation and evaluation in our, or any other, sys-
tem.

For each of the inputs, as well as final and intermediate node outputs, we must determine the range of

values that they can assume. The five test cases are insufficient to do this. The values in these eases must be

augmented by an examination of the rule base (and the text portions of the report). If a value was ever

observed in an input to a test case or referred to in the Ihs or rhs of a rule, clearly it must be a possible value.
Other values might be presumed to exist based on the analyzers knowledge of symmetries in value descrip-

tions. For example, for binary features, like {ON, OFF}, {OPEN,CLOSED}, the observation of one member

of the set would allow the inference of the other. For a ternary feature, like {POS,NEG,NONE}, observation

of either of the poles would allow the inference of the other, however, it would be difficult to predict the pre-

cise name for the neutral value. In many cases parallelism or analogy can also be used to infer possible values;

for example, thc-x, the-y, and thc-z might all be assumed to have the same set of values, as would rhc-roll, the-

pitch, and rhe-yaw.

By examining the rules and test cases it is not possible to determine the range for inputs that had scalar

values; this would require a domain expert. There are a large number of these inputs: fuel-used-a, fuel-used-b,

tank- pressure-was-a, tank-pressure-was-b, tank-pressure-current-a, tank-pressure- current-b, gyro-thruster-

time, and he-thruster-time. An expert would also be required to acquire the cooccurrence restrictions on values

of inputs, which are important to reduce the space of inputs, as well as to acquire the distributions of input val-
ues. Constraints on the occurrence of conclusions and/or more extensive test suite would also desirable.

8.3 The Translation of CLIPS MMU to EFGs and AFOs

The manners of dealing with both the inputs and the outputs in the MMU expert system are problematic.
First, one needs to deal with the issue, mentioned above, of the conclusions which are embedded in some of the

many print messages; these are to correspond to the output (node)s in the EFG representation. Second, the

MMU expert system does not take in any inputs. Instead there is a separate rule, triggered by a distinct fact, to

initialize the database for each of the five test cases and to print out the expected results. These rules were just

included for the demonstration of the system. Obviously, there is a need to identify and delete these rules

which are not a part of the knowledge base proper. Some additional rules would have to be included in order

to actually read the inputs from a file for each of the very large number of test runs our method would require.

Metaknowledge about the structure of facts is also required to do the translation. This is the case

because the current version of out translator works with 'single-valued facts.' Single-valued facts are restricted

to consist of a predicate and a value; further multiple values cannot exist for the same predicate. The purpose

of adopting these restrictions was to rule out the possibility of having rules which required unification. They

also served to reduce computational routing effort and to limit access to values. This was discussed in last

year's project report[18].

Consider the clause (vda a r2 off), which can be characterized as a multi-valued fact. The only field

which always appears with the same value is the first, vda; thus it may be regarded as the predicate. The other

fields may be regarded as the values. With the appropriate metaknowledge the clause (vcla a r2 off) would be

changed to (vda-a-r2 off), in which the last field is treated as the designated value. Another example would be
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theclause(vdaa?n&-r2&-r4on),i.e.anyvda-aexcept-r2or-r4whichison;thiswouldbechanged to (OR

(vda-a-ll on) (vda-a-13 on)).

For the MMU expert system, it appears to be possible to acquire the metaknowledge about the structure

of facts by analysis of the rule base. With this metaknowledge the clause (vda a r2 off) would be changed to

(vda-a-r2 off). In addition, the clause (vda a ?n&'r2&'r4 on), i.e. any vda-a except -r2 or -r4 which is on,

would be changed to (OR (vda-a-ll on)(vda-a-13 on)). Our current research involves developing a method to

do tmification with the dataIlow architecture of the EFG. After this method is developed the restriction to sin-

gle-va/ued facts can be dropped, and this trans[ormation of the structure of facts will not be required.

8.4 Errors Discovered During Analysis of the MMU Rules

During the analysis to determine the required metaknowledge, several errors were discovered. Although

this analysis was done by hand, we expect that it will be possible to detect these errors automatically, when our

tools are completed. The first two errors fall in the category of unreferenced values. (gyro-thruster-time 2)

appears as an input in all five test cases, but the predicate gyro-thruster-time never appears in the lhs of any

rule. Also (hc- thruster-time 1) appears as an input in the first two rules, but never appears in an lhs. Errors in

the category of unreferenced values would be discovered in the translation stage, because there would be no

outgoing link from the corresponding (input) node.

One "stylistic" inconsistency in the labeling of facts should also be mentioned. The predicate which

most directly indicates a conclusion in this system is (failure ...). It can assume the values cea, cea-a, cea-b,

cea-ab, thruster-a, thruster-b, cea-coupled. One failure, however, was represented by a distinct predicate (fail-

ure-thrusters-with-xfeed); it would have been more consistent to represent this with the same predicate, as

(failure thrusters- with-xfeed).

8.5 Conclusions

The conclusions thus far are:

1) That it is possible to detect faults in the MMU test case using the KRAM techniques providing that the

MMU test case is re-sa'uctared so that it is suitable for automatic testing. This reslruct'ta'ing involves

modifying the system so that it has clearly identifiable inputs whose values can be generated and outputs
whose values can be tested.

2) That all the faults found so far would have been detected during the translation of the rules to an EFG

without the need for monte-carlo simulation. The discovery of errors and consistency checking of rules

by this translation process is parallel to the error discovery done by a compiler for a high level language,
such as Ada. Some of the detectable faults appear as graph connectivity or data type inconsistencies.

3) A constraint specification for the performance of the MMU rules will need to be prepared ff thorough

testing of the correcmess of their execution is to be performed using monte-carlo test methods.

Two final comments from related work:

a) It would appear that _ mos_ useful aspect of the monte-carlo testing is in determining whether the sys-

tem will produce the correct outputs in the correct order. We have not found many places where sensitiv-

ity to values in rules or inputs is a major problem. It is very hard, however, to determine a priori all the

possible outputs and output orderings which can occur for possible sets of real-time inputs. This is where

a formal performance constraint description, used in conjunction with automatic monte-carlo testing, can

find problems which cannot be detected by any other methods.

b) Running monte-carlo simulations over a large set of rules will take a lot of computer time to achieve a

reasonable confidence in the correctness of the rules. It is recommended that any large rule set be broken

down into smaller groups of rules each of which can be extensively tested using monte-carlo simulation.

Then it is recommended that the rule groups be separately instrumented during overall system testing to

ensure that their input-output relationships, as specified by their performance constraint description, are

not violated. This is comparable with hardware testing in which black boxes are extensively tested

before being integrated into a system. The black boxes are then monitored during systems testing to

ensure that they still work as specified. This also makes it easier to develop test specifications as the

specification only have to apply to a small group of rules as opposed to the whole system,
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9. LESSONS LEARNED

This chapter contains some observations about expert systems learned as a result of trying to mimic their
actions with data flow mechanisms.

1) Expert systems shells contain a large amount of implicit knowledge. This implicit knowledge minimizes

the work that a programmer/knowledge engineer has to do to encode an application.

There is a trade-off between the implicit and explicit knowledge components of an expert system, as

shown by the pie chart in figure 9.1. Relatively, the more implicit knowledge that a shell contains, the

less work that has to be done to encode an application. This implicit knowledge, however, also limits the

flexibility of the shell and its domains of application.

Explicit

Knowledge

Implicit Knowledge

Figure 9.1 Implicit and Explicit Knowledge Components of an Expert System.

This observation applies to all higher level languages, including fourth generation languages and their

related CASE tools. To minimize the work in encoding an application we want the language to use as

high a level of abstraction as possible. To maximize flexibility we want to allow users to code at as low

level as possible. A good language provides some mix of these so that users can program at a high level

of abstraction where possible and can use lower levels when not.

In expert systems shells, such as CLIPS, users program in rules. Here the implicit knowledge contained

within the shell is about how data is combined with rules to produce inferences such as through the use

of the Rete algorithm and unification mechanisms.

2) The actions of an expert system shell are highly dependent on the embedded implicit knowledge. The

same set of rules and data can draw different inferences when executed using different expert system

shells. Thus any validation and verification procedure must also include the expert system shell as well
as the rules.

3) All expert system shells contain conflict resolution mechanisms to decide which rule to fire next. For

expert system shells these mechanisms are generally designed for single processor execution, although

there has been considerable work on parallel and concurrent logic programming languages[19]. If it is

desired to speed up execution of a set of rules by executing them on multiple processors, then the order-

ing constraints imposed by the conflict resolution mechanism must be relaxed. Otherwise the rules will

execute sequentially in the same order they executed on a single processor. If these constraints are

relaxed, however, then the inferences which result may be different from a single processor case.

4) If rule execution is to be independent of inference engine sequencing limitations, then the predicate

clauses of the rules must he fully specified. That is, the outcome should not he dependent on rule order

in the data base. Unfortunately this is in conflict with requirements for efficient execution of the Rete

algorithm[20].
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Conceptually,arulebaseisaflat structure with rules being independent of their location in the rule base.

In practice this is not true, with extensive use being made of rule ordering precedence to ensure correct

operation of the rule base. We suggest that this is a bad practice from the viewpoint of maintainability as

the inadvertent swapping of two rules could lead to a rule base no longer performing as required.

5) Flat rule structures are as bad as programs written as straight in-line code with no procedures from the

viewpoint of maintenance. We believe that it is important to break rules down into related clusters which

can be maintained as groups. This would be highly beneficial from the point of view of translation to run

time code as all the rules in a cluster could be compiled into a single execution process, or for our system

into a single AFO. At present each rule is translated into a separate AFO. This is not very efficient from

the execution viewpoint as the overhead in message passing relative to the execution time for a single
rule is relatively high. If multiple rules in a cluster were combined into one AFO then more efficient exe-

cution would be possible.

6) Present expert system building Shells essentially have control strategies which deparallelize the inher-

ently paraUelizable declarative rule representation. To the extent that the programmers encode knowl-

edge in such a way as to take advantage of the control strategy it would not be possible to simply run

their rules in parallel. The only potential hope for parallelism under these conditions is to run the rules

in parallel and to precompile an ordering for the results received, so that they will correspond to those
reached by the corresponding control strategy. The extent to which this precompilation can be done is
not clear.

If programmers/knowledge engineers did not write rules whose correcmess was dependent on the partic-
ular control strategy of their shell, then parailelization would be possible. To determine whether the

knowledge engineers had written such rules, one could undertake a very large number of runs, first with

the shell's control strategy and then with a parallel regime, and compare the results. It may also be pos-

sible to use analytic techniques to determine equivalence under a parallel execution strategy.

7) Present shells do not allow specification of dynamic conflict resolution schemes. The choice of which

rule to fire from the set of rules that potentially could fire in current expert system shells is a function of

the order in which the rules are included in the knowledge base, the specificity of the rules, or the

recency of the new data which makes the rules eligible for tiring, or a combination of these. The last is

the most dynamic method, yet it still lacks flexibility. Alternatively, with current shells one can always
explicitly include as a pan of the rules variables whose purpose is to control the flow of execution, for

example, goals or agenda modification statements. This approach does not make a clean and explicit

division between the dynamic conflict resolution knowledge and the declarative problem-solving knowl-

edge base. AF has the capability to support dynamic importance calculations for decision processes, but
current expert system shells do not allow the explicit specification of this kind of (meta)knowledge. AF

has the capability to support dynamic node firing ordering, but to take advantage of this, there must be

the capability to specify dynamic conflict resolution knowledge.

8) Present shells also lack other types of meta-knowledge specification which are essential for translation as

well as validation and verification testing. Some of the needed knowledge types are:

Metaknowledge for testing would be relevant for any dynamic testing; some of it would be relevant also

for analytic techniques. This metaknowledge was discussed in the section on test generation and evalua-
tion. It includes (1) constraints on the ranges of all inputs, outputs, and intermediate values, (2) cooccur-

rence constraints on input values, (3) constraints on the order of availability of inputs, and (4) condi-

tional relations between inputs, outputs, and intermediate nodes. Fully or partially specified test cases

would fall into the final category, with each fully specified test case being a conditional relation between

a full set of input values and output values. The third category is only relevant in a system where inputs

are not assumed to be all available at the same time. None of these four categories of metaknowledge

can be acquired by analysis of the rule base. This metaknowtedge must be a pan of the specification of

the expert system.

Metaknowledge about the inference engine and control strategy is required for generating the EFG nodes

and is discussed above in that section. It includes metaknowledge about confidence calculations, condi-

tions for firing and retiring rules, and conflict resolution strategies and/or priorities for choosing which

eligible rules to fire. With the exception of priorities, which are sometimes represented explicitly in the
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rules themselves, all of these types of metaknowledge need to be specified independently. Normally they
would be extractable from the (internal) documentation of the inference engine or shell, but it would be

helpful if they were stated explicitly as a part of the specification of the expert system. This seems espe-

cially appropriate since the rule base should be expected to perform as specified only when used with an

inference engine with these same characteristics.

Metaknowledge for decollapsing and reclustering the rule base is required so that the rule base can be

translated into an EFG which has a very small grain. This will allow paraUelization and reduce compu-

tational routing effort. This decollapsing will result in a rule base with simple conjunctive rules referring

to single valued facts. Reclustering of the value nodes representing the individual facts may then be

done based on the architecture of the delivery system as well as the constraints on the contemporaneous-
ness of access to the facts.

The decoUapsing metaknowledge is of two types. The first is based on the syntax of the representation

language, in particular, its abbreviatory conventions. This metaknowledge is acquirable from the docu-

mentation for the representation language. The second type is based on the semantics of the domain.

Best guesses about this metaknowledge can be made based on analysis of the rule base using general

world knowledge and the limited domain knowledge of the analyst. The accuracy of these guesses

would be a function of the quality of mnemonic symbols used in the rule base and the extent of the

domain knowledge of the analyst; confirmation would still be required from the knowledge engineers

who created the rule base. Again it would be desirable that this metaknowledge be explicitly stated as a

part of the documentation, particularly, a description of the fact templates. With reslm_t to the recta-

knowledge for reclustering, while the architecture of the delivery system is logically independent from

the rule base, analysis of the co-occurrences of references can yield the constraints on the contemporane-
ousness of access to the facts.

9) Most present shells do not include methods of specifying time relationships or of reasoning about time in

a real-time manner. They do not have ways of expressing the time period for which data or conclusions

are valid or of expressing requisite precedence ordering of events. If a shell contained a means of

expressing such knowledge then this could be incorporated into AF. The result would be a system in

which the application could exert finer control over the execution of its component code threads.

10) At present AI shells are designed to run on single processors. It would be highly beneficial if they were
extended to include knowledge representations to allow the user to specify which actions can be exe-

cuted in parallel and which must be executed in a sequential manner. This is highly desirable from the

viewpoint of translating automatically to code threads for execution on a parallel processor. There is a

strong analogy here to the "dusty deck" problem of translating FORTRAN programs to run on a parallel

processing system.

11) From the viewpoint of testing, it is essential to develop the test specification knowledge in a formal test

language at the same time as the system is being developed. In this way the knowledge embedded in the

test language evolves along with the rest of the system allowing the system to be thoroughly tested after

each extension. The formal test description knowledge base contains all the knowledge against which

prior system configurations have successfully run. Thus, when a change is made to the system, testing

against the test language specification assures that the system still meets specifications in all areas, not

just the area changed. This can help avoid the problem of introducing more bugs when fixing others.

In summary we have found that the object-oriented, message-based paradigm of AF is capable of provid-

ing far more capability for the execution of real-time AI applications than current expert system shells have the

capability of expressing or simulating. There are three possible solutions to this problem:

a) Extend current expert system shells to be able to express the types of meta-knowledge needed for real-

time AI applications.

b) Provide the recta-knowledge external to the shell, after the rules have been developed for single proces-
sor non-real-time execution. This is the current method except that the recta-knowledge is embedded in

the translator. Ideally this metaknowledge would be stated explicitly in the form of rules or other "user

friendly" representations.
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c) Develop a shell interface to AF which will allow for rapid prototyping while embodying the knowledge
needed for efficient testing and translation to a parallel real-time execution environment.
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10. CONCLUSIONS

During the past year the following project objectives have been successfully achieved:

1. Development of a comprehensive BNF language specification for Evidence Flow Graphs which encom-

passes the majority of the features found in all the intelligent systems studied including many expert sys-
tems.

2. Acquisition of Adaptive Tactical Navigator system causal network and rule knowledge representations
and their conversion into Evidence Flow Graphs.

3. Study of the CLIPS expert system shell and the development of techniques to convert forward and back-
ward chaining rule representations into EFGS.

4. Development of an automatic translator to convert ATN rules in a CLIPS-like syntax to EFGs. This
translator was written in Ada.

5. Development of a translator from EFGs to Ada code modules which, when linked with AFA, form an
executable system. This wanslator is written in Ada.

6. Development of an Ada version of the Activation Framework called AFA.

7. Development of a test specification language.

8. Development of a test generator program written in Common Lisp.

9. Study of methods for test evaluation.

10. Study of Petri Network technology as a way of analyzing EFGs to detect problems.

The most important achievement was the demonstration of the viability of the concept of starting with

rules and automatically converting these into executable Ada code. Not only was the resultant code executable

in real-time but it was demonstrated that the system could be tested to ensure that it performed to required per-

formance specifications for validation and verification purposes. Also, the associated KRAPP project has
demonstrated that the code is executable with a high degree of parallelism on a fault tolerant parallel processor.

It was found that random monte-carlo testing was a viable approach to verifying performance, but this

required large amounts of processor time. It was also found that a large volume of output data could be gener-

ated which indicated that it was highly desirable to use a much more sophisticated computer program to ana-

lyze the output.

Petri network technology was studied in the hope that it would lead to techniques for the analysis of

EFGs thereby avoiding the processor time spent in monte-carlo testing. A technique for converting EFGs into

Petri Nets was developed but the resultant networks were so complex as to make them intractable from an ana-

lytic viewpoint. It was concluded that it was desirable to extend Petri network techniques to be able to include

EFGs so that graph analysis could be performed directly on the EFG to detect possible execution cycles result-
ing in livelock or deadlock.

An important byproduct of the research was an analytical understanding of the functioning of rule-based

expert system shells. In the process of studying how to convert rules and their associated shell metaknowledge

into EFGs, many potential problems that could cause incorrect execution became apparent. Intelligent systems

are easy to develop using expert systems shells because of the metaknowledge contained within the shells.

Users only have to provide the needed additional knowledge in the form of rules. The disadvantage is that

users may be unaware of the constraints on or actions of the inference engine resulting in unexpected side
effects under certain conditions.

As a result of this research we have come to believe that the meta-knowledge in expert systems shells

should be explicitly stated and specified. Further, we have come to realize that minor changes to an inference

engine could result in significant changes in the execution of a rule base. This implies that validation and verifi-

cation procedures for rule-based expert systems must include the shells themselves as well as the rules they

process.

We conclude that the proposed methodology for converting high level knowledge representations into

Ada code capable of execution in real-time is feasible. We further conclude that an automatic test generator

and evaluator is not only feasible but highly desirable. We believe that the results of this work have laid the
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foundationforthedevelopmentof softwaretoolswhichwillconsiderablyreducethedevelopment and mainte-

nance costs of software for embedded intelligent systems which need to function in real-time.

Our recommendations for follow on work are as follows:

1) Extension of the prototype translators developed under this project to include other knowledge represen-

tations such as those used by expert system development shells such as CLIPS and ART.

2) Extension of the prototype test generator and evaluator so that they become useful tools for performing

test generation and evaluation.

3) Further study of the application of graph theoretic techniques to detect potential faults in knowledge

based representations without extensive testing.
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